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ASSOCIATED TO HECKE-MAASS FORMS

SHENG-CHI LIU AND JAKOB STREIPEL

ABSTRACT. We establish an asymptotic formula for the twisted second mo-
ment of L-functions associated to Hecke—Maass forms, which can be used to
deduce a zero-density estimate for these L-functions in the spectral aspect.
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1. INTRODUCTION

The study of moments of L-functions is one of the most important themes in
analytic number theory. Many deep results, such as subconvexity bounds and
nonvanishing of central L-values, can be obtained via the moments method. In
recent works [7, 1, 8], it was proved that there exists a positive proportion of
nonvanishing of central L-values for the family of Maass forms for SLs(Z). The
proof relies on the asymptotic formulas of the mollified first and second moments of
L-values at the central point s = 1/2. In this paper, we will establish an asymptotic
formula for the twisted second moment of the L-values at s = 1/2 + o + i7 with
o > 0. This formula has its own interests and could be further elaborated upon and
utilized in the future. For example, Selberg [12] proved an analogous asymptotic
formula for the twisted second moment of L-functions for the family of Dirichlet
characters with large prime modulus ¢ and used it to deduce a zero-density estimate
for this family of Dirichlet L-functions.

To state our main result, we need some notation. Let {u;} be an orthonormal
basis of SL2(Z) Hecke-Maass forms corresponding to Laplace eigenvalue i + t?
with ¢; > 0. In this case {u;} consists of even Maass forms and odd Maass forms
according to u;(—%) = u;(2) or u;(—%z) = —u;(z). Each u;(z) has the Fourier
expansion

wy(2) = 3 py ()W, (n2)
n#0
where s; = § +it; and
Wala +iy) = 21y| K,y (2mly|)e(x)
is the Whittaker function.
Let A\;(n) denote the n-th Hecke eigenvalue of u;(z). Then we have

pi(En) = pi(£1)A;(n)n 2.

For each even Maass form u;, the L-function associated to u; is defined by
L(s,uj) := Z Lsn) for Re(s) > 1.
n=1 n
1
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We also associate to u; the symmetric square L-function

(n2
L(s,sym?u;) = ((2s) Z %s) for Re(s) > 1.

n>1
For 1 < M < T, we define

(t=1)2 t+1)?
(1.1) k(t) =e" T e

The main result of this paper is the following theorem.

Theorem 1.1. Let T and M be large parameters with T¢ < M < T'~¢, let 0 > 0
and 0 < |7| < T3, and let ¢ < T3 be a square free integer. Let {u;} be an orthonor-
mal basis of even Hecke—Maass cusp forms for SLo(Z) with Laplace eigenvalues
i + tf. Then we have

/!
Y Wikt OIL(G + o + it ;)
j

:M Tir (£) /oo k(t) tanh(rwt)tdt + 41 = 20) 7irl) /OO (t) tanh(rt)t (t) - “

{72 {1/240 872 {1/2—0o 1T

L S —2i7) 7(0) /o; k(t) tanh(rt)t (;ﬁ) o dt

872 €1/2—i'r _

L A +2i7) 7(0) /_ ) k(t) tanh(rt)t (;) o dt

]r2 /24T =
(1.2)
+ O(Tg—%o-s-sM + p1/2+opl/2—20+e p r—1/2 + 6—1/2+UT1/4—20+6M)
where Y restricts to even Maass forms, w; is given in (2.8).

Note that both sides in (1.2) are analytic in ¢ near 0. Letting o — 0, we have
the following corollary.

Corollary 1.2. Let T and M be large parameters with T¢ < M < T'~¢. For
0< 7| < Ti, and £ < T3 a square free integer, we have

S wik(t)A (OILG + i)

zézﬁﬁf) /O; k() tanh(rt )t (2 log (2’;> —log ¢+ 27) dt
4 s =2im) () /Z k() tanh(rt)t (t> o dt

{72 41/2—1‘7— 2T

L S +2in) (0 L O; k(#) tanh(rt)t (;)2 dt

) (1/2+ir

+ O(T%"'EM + p1/21/2+e pr—1/2 + 6_1/2T1/4+5M)
where v is Fuler’s constant.

The proof uses the standard method of approximate functional equation and
Kuznetsov trace formula. Although many technical estimates we used were estab-
lished in [8, 14], it is still worth providing a detailed proof of Theorem 1.1 to add
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to the literature for future reference. One of the main difficulties in the proof is
extracting the off-diagonal main term, since it comes from the integrals involving
both J-Bessel and K-Bessel functions. This relies on the uniform treatment of
these integrals in [8].

Theorem 1.1 can be used to deduce a zero-density result in the spectral aspect
which may have other applications. To describe the result, for ¢ > 0 and H > 0,
we let

N(o,Hyuj) == #{p=1/2+ B +iy : L(p,u;) =0, B3>0, [y| < H}

and
N(o, H) = 1 3 ()N (o, H )
J
where
(1.3) W= # L O:o k(1) tanh(nt)tdt.

We have the following zero-density estimate in the spectral aspect for the L-
functions associated to Hecke-Maass forms.

Theorem 1.3. Let 2/logT < o < 1/2. For some sufficiently small 6, 8 > 0, we
have

N(o,H) < HT % logT
uniformly in 3/logT < H < T°.

Analogous results for the families of L-functions associated to modular forms
were established by Kowalski and Michel [6] in the level aspect with great applica-
tions and by Hough [3] in the weight aspect. Our zero-density result in the spectral
aspect can be used to remove the GRH assumption in Hejhal and Luo’s work [4].

Remark 1.4. One can show by standard methods that N (0, H;u;) < HlogT for
t; < T and hence N(0,H) < HlogT. Theorem 1.3 shows that there are only very

few L-functions with zeros of imaginary part less than T° and real part greater
than 1/2+ C/logT.

To prove Theorem 1.3, one uses a similar argument as in [3, section 5] to derive
from Theorem 1.1 the following mollified second moment.

Proposition 1.5. There exist Dirichlet polynomials {M(s,u;)} with M(s,u;) =
M (5,u;) such that for §,0 > 0 sufficiently small, we have

1 I
W Z wik(t;)|M(% + o +ir,uj)L(3 + o +it,u;)|> <1+ 0 (T7%),
J

uniformly for 1/logT < o <1 and |7| < T°. Moreover, for all T
M (3/2 + i, u;)L(3/2 4 iT,u;) = 1 + O(T 7).

Now Theorem 1.3 can be derived from Selberg’s lemma [12, Lemma 14] and
Proposition 1.5. See [6, section 4.2] and [12] for details or [3, section 2] for a outline
of the proof. The rest of the paper is devoted to proving Theorem 1.1.
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2. PRELIMINARIES

2.1. Approximate functional equation. It is known that L(s,u;) has an ana-
lytic continuation to an entire function on C and satisfies the functional equation

A(s,uy) == 7(s,t;)L(s,uj) = A1 — s,u;).

where

(2.1) 'y(s,t):7r5F<s—|2—it>F(S_2it).

The proof of the following approximate functional equation for |L(s,u;)|*> can
be found in [5, Theorem 5.3].

Lemma 2.1. For s = % 4+ o +i7 with 0 < 0 < 1, we have

Aj(n)Tir(n) 21 & N(n)Tir(n) =
(s,u7)] Z d1+20 Z nito Vi(nd®,t;) + Z di—20 Z : e Vi(nd®, t;)

1
n=1 d=1 n=1 nz
with
1 v dv
V)= 5 [ e
~ 1 ~ dv
s 7t = 5. v F ,t —_—.
Vi) = 5z [ 0G0
where
Galot) = v(s + v,t)’y(i +v,t) o
v(s,)7(5, 1)
- 1— 1
Gs(v,t)—v( s+v,t)y(l =54 v,t) v
v(s,t)7(5, 1)
Here

T,(n) = Z (%)

ab=|n|

is the generalized divisor function.

Likewise, for s = % + o + i7, we have

(2.2)
Tit (M) Tir Tit (n)Tir (1
IC(s 4+ it)C(s — it)] Z d1+20 Z t(ni-w( ) Vi(nd?,t) + Z dl 20 Z t ni o Vi(nd®,1).

n=1 n=1

The functions V, and V, satisfy the following properties.

Lemma 2.2. Lets=%+a+i7‘ with0 <o <1. Let A>0, T >1and e > 0.
For 1 < |t| < T and |7| < |t|7, we have

y -4 = y —A
Vs(y,t) <a (1 + ?2) ; Vs(y,t) <a (1 + ﬁ)

and
e+ilogT

—v dv erp—
@3 V=g [ G 0T

—ilogT
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20 o= [ 00 % 0T ).
(25) Vi =1+ 0a((4)%),
(2:6) Vo = =220 4 o((4)1).

Proof. This is analogous to [8, Lemma 4.1]. It follows from the Stirling formula
and suitable shifts of the contour integral as in [5, Proposition 5.4]. The main term
in (2.5) and (2.5) are the residues from the pole at v = 0 while the residues at the
other poles v are exponentially small in view of |[Im(v)| < t. O

2.2. Kuznetsov trace formula.

Definition 2.3 (Space of test functions). Let S > 3. We set J(S) to be the
space of functions h(t) which extend to even holomorphic functions on the strip
{t+io: |o| < S} such that

h(t +io) < e ™ (1 4 [t))~V,
holds uniformly for some N > 6.

Definition 2.4 (Bessel kernel). Let s € C. For z € Ry we define

sin(7s) (T2 (4mV/x) — Jos(dm\/2)),
By(—xz) = 4cos(ms) Koy (4m\/T).

™

Bs(z) =

Let h(t) be a test function in #2(S). Define
= / h(t) tanh(rt)tdt, and H(x) = / h(t) B () tanh (1)t di

for z € R.
For m,n > 1 we have the Kuznetsov trace formula

Z’ wih(t)As () (n) + — /_ O; W) (t) s (m)ie () dt
@7
= Sty + 3 (S(m’””)%(m”) 4 Sm, ”;C)%(m"))

872 872 c c? c c?

c=1
! .
where )" restricts to even Maass forms and

1 (t)— 1
2L(Lsym?uy)’ T A T2

It is known that |¢(1 +4t)| > 1/log(3 + |¢|) and hence

(28) w; =

(2.9) w(t) < log®(3 + |t]).
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2.3. Mellin transform of Bessel kernel. The Mellin transform of the Bessel
kernel B;;(x) is defined by

(2.10) Bi:(s) = Byi(x)|x|*da.
RX
The explicit formula for Eit(s) is given in the following lemma.

Lemma 2.5. [8, Lemma 9.1] For [Im(t)| < Re(s) < %, the integral (2.10) is
absolutely convergent and

(2.11) Bi(s) = m

with v(s,t) as defined in (2.1).

2.4. Voronoi summation formula. We have the following Voronoi summation
formula for the divisor function (see [5, Theorem 4.10] or [10]).

Lemma 2.6. Let w(x) € C(R*). Let ¢ > 1 and (a,¢) = 1 with aa =1 (mod c).
Then

3 TiT(n)e<%)w(n) = I LE(1 — 267 )i (0) + ¢ AT IC(1 + 2070 (0)

n#0
1 —an\ - n
+o 2 meme( =) ()

where

70) = [ w@lalds,
)= [ w@B.)ds for y A0

3. PROPERTIES OF BESSEL INTEGRALS
For 1 < T¢ < M < T'7¢ and k(t) as in (1.1), we define
h(t;v) = k()Gs(v,t)  and K (t;0) = k(t)Gs (v, 1)

with Re(v) = ¢ and |Im(v)| < logT.
Let

H(x) = / h(t; v) Byt () tanh(mt)tdt
oo
H'(x) = / B/ (t;v) Byt (z) tanh(rt)tdt.
The following results are essentially established in [14, Lemmas 7.1 and 7.2] (also
see [8, Lemmas 7.1 and 7.3]).

Lemma 3.1. There exists a Schwartz function g(r) satisfying g\ (r) L ae (14
[r)=4 for any j,A > 0, and such that S (x) = H#,(x) + A (z) + O(T~*) and
A (x) = HL(x) + A (x) + O(T~4) for || > 1 with
Me/M
Ho(x?) = MTHE/ g(Mr)e(Tr/m F 2x coshr)dr
—M</M
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M /M
Ho(—x?) = MT e / g(Mr)e(Tr/m £ 2z sinhr)dr
—Me/M
M /M
H(2%) = MT 4o+ / g(Mr)e(Tr/m F 2x coshr)dr
—Me/M
M= /M
HL(—a?) = MT 4ot / g(Mr)e(Tr/m £ 2x sinhr)dr.
_ME/M

Moreover, 7€ (x) =
we have J(x) <

) (T=4) and ' (x) = O(T~4) for 1 < |z| < T?. For |z| <1,
also have Jy(x)

0]
. MT1—2A+e ﬁ|x| and ﬁiﬂl(w) <A MT174072A+€\/H' We
O(T~4) for 1 <x < M*~<T2.

kS

4. ANALYSIS OF HANKEL TRANSFORMATIONS

We collect the results for the Hankel transform arising in the Voronoi summation
formula in this section. Most of the results are given in [8] with slight modifications

here. In view of Definition 2.4 and [13, 3.61 (1) (2)], we have
By(@) = g (™ = DH{ (@) + (7 = DH ()

- 2sin(7s)

where H ,Sl) (z) and H, 52) (x) are the Hankel functions. By the asymptotic expansions
in [13, 7.2 (1, 2) and 7.23 (1)], there exists smooth function Wa;.(z) such that for
x> 1and |7] < 2'/4,

e(£2y/x — 1/8) 14 |7]2K
o) = o [ EP(=3TVE)
(12) By (-a) = 0 (SR

W (2) < 1.

Let w(z) € C°([1,2]) satisfying w?(z) <; (logT)? for all j > 0. For |A| > T2,
define

w(@,A) = w(|z))# (Az),  w'(z,A) = w(|z]) A" (Az).
Let w;-(y, A) be the Hankel transform defined by
RX
and

WirlA) = [ /(o) Bir ),
RX

We may assume that A > 0 since w;,(y,A) = w;r(—y, —A) and Jif(y,/\) =
w/i‘r(if% 7A)
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Lemma 4.1. Suppose A > T2, |7| < TY* and y > T. We have

Tir (1, A) = MTf W (/y/R,VR) + O(T )
and
1—do+e
w zr(iyVA) Wf \/ y/ \/> + O )
f
with

M® /M R
Ut(z,A) = / e(Tr/m)g(Mr)V(A(z — coshr))dr
—M</M

for A > M*“T and U (x,A) =0 for A < M*~T, and
Me/M R N
U~ (z,A) = / e(Tr/m)g(Mr)(V(A(z + sinhr)) + V(A(z — sinhr)))dr
7M5/M
where ‘7(1‘) is a Schwartz function satisfying

—A
v . 1 ||
(z) <ia ( log T

for any j, A > 0.

Proof. Using the (4.1) and (4.2) for B;,(z) and Lemma 3.1 for 5 (z) and ' (x).
See [8, Lemma 8.1] for details. O
Proposition 4.2. The function U~ (xz,A) is negligibly small unless x < MWE,
which case ¥~ (x,A) < TKE. Similarly, UT(x, A) is negligibly small unless |z — 1| <
Me . + T¢ + —A 2—e
1z, in which case ¥ (x, A) < W =Tk Moreover, UF(1,A) < T=4 if A < T#7°.

Proof. See [8, Propositions 8.6 and 8.7]. O

m

5. THE TWISTED SECOND MOMENT

We devote this section to the proof of Theorem 1.1. Using Lemma 2.1 we can
rewrite the twisted second moment as

My(l) = Z'wjkm) (0 L(s,uy) 2

=3 o n;(ﬁf S wik()A (DA (W)Va(nd?. 1)
d=1

n=1 7

Mg

+

]- > Tir (N ! ~
Ji %0 > n%(,[,) > wik(t) A (0N (n)Vi(nd?, t).
n=1 7

Y
Il

1
In view of Lemma 2.2, we may truncate the summations over n and d to nd? < T%t¢
with a negligible error term.

Next we use the expressions of V; and Vj as in (2.3) and (2.4). Then we apply
the Kuznetsov trace formula (2.7) inside the v-integral with the test functions:

h(t;v) = k(t)Gs(v,t) and B/ (t;v) = k(t)Gs(v,t).

Moreover, for the diagonal terms and continuous spectrum we revert the v-integral
to Vs and Vi with negligible errors.



TWISTED SECOND MOMENT OF HECKE-MAASS FORMS 9

It follows that
Mo() =D+0O—~C+D +0 -C" +0(T4)
where D and D’ are the diagonal terms

1 Ti'r(g) s 1 0 )
D =g e > Jit2o / k(t)Vs(£d?, t) tanh(mt)tdt
d=1 —o0

1 Tit E e 1 o0 ~
D' =7 /2(_?7 > e / k(t)V,(¢d?, t) tanh(mt)tdt,
d=1 o

and the terms coming from the continuous spectrum are (in view of (2.2))

o) 2
C+C = %/ w(t)’((% +0+z’7+it)§(% + 0 4 i1 —it)| T (£)k(t)dt.

The off-diagonal terms O and O’ are

1 e+ilogT 1 d
0=— —2(’)(1})l
2mi e—ilogT 87 v
O/ B L e+ilogT LOI(U)@
B 2mi e—ilogT 82 v
with
_ Tir (1) = S(t,n;c) nf.
O(v) = ;} |n‘%+a+vd1+20+20 Zl c 7 Ciz’v
|n\d2§T2+E
/ o TiT(n) - S(Z,n;c) / nie
0 (U) - T;) |n|%—a+vd172a+2v Cz:; C < c? Y
‘n|d2ST2+E
and

H(T;0) = /00 h(t;v) Byt (x) tanh(mt)tdt

— 00

H' (x50) = /00 ' (t;v) Bit(x) tanh(mt)tdt.

— 00

5.1. Continuous spectrum. Using the bound ¢(1/2 +it) < (14 [t|)**/34+¢ (due
to Bourgain [2]) and the Phragmén—Lindelof principle, we have

(5.1) C(1/2+ 0 +it) < (14 J¢)si—mote
for o > 0. Using (2.9) and (5.1), we deduce that

C+C < T30t
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5.2. Diagonal terms. Inserting the definition of V,(y,t) and Vi(y,t), we have
D + D’ equals

1 7 (0) [ 1 _ Y(s+ v, )y(E5+v,t) 2dv

— k(t) tanh(wt)t— £7Y¢(1420+2 v —dt

8m2 f1/2+0 [W () tanh(rt) 21 /(3) C(1+20+2v) v(s,t)7(5,t) ©

1 7 (0) [ 1 _ Y1 —=s+uv,t)y(l =5+v,t) ,2dv
— k(t) tanh(wt)t— 7C¢(1-20+42 v —dt.
82 f1/2—0 /700 (¢) tanh(rt) 2mi /(3) ((1=20+20) v(s,t)7v(5,t) <

Next we shift the v-integral to Re(v) = —A in both integrals for a large A > 0. The
main contribution is coming from the residue at v = 0. The contribution from the
residue at v = —o from the first integral and the residue at v = ¢ from the second
integral are canceled. The contribution from the residues at the other places and
the integral at Re(v) = —A are negligible.

The contribution from the residue at v = 0 gives

Tir (£ o0
# 61/2(‘*“)7 ¢(1+20) /700 k(t) tanh(rt)tdt
1 (0) > V(1= s,)y(1 =5,1)
+ @£1/2—0<(1 - 20-) [m k(t) tanh(ﬂ't)t 7(8’ t)/y(g’ t) dt.

By Stirling formula, we have

= () ot

Thus the main term is

1 Tit Z 0

Sn2 41/2(+3,C (1+20) /_ N k(t) tanh(rt)tdt
L T7ir) 1-2 0Ok;tt h(mt)t ¢ _4adt O(p~V/2Fop—do+1/ate ur
gz piaot(L=20) [ k(@) tanh(rt)t | 5o +0( )

6. OFF-DIAGONAL TERMS

We will study the off-diagonal terms O and O’ in this section. By Lemma 3.1,
we may impose the condition |2 | > T2 with a negligible error. Let 3, v(|z|/R)
be a dyadic partition of unity for R\ {0} with R = 27/2 and v(r) € C°[1,2]. It
suffices to consider O4(R,v) and O}(R,v) (see (6.1) and (6.4)) via inserting the
partition of unity into O(v) and O'(v) for the n-sums.

6.1. The off-diagonal term O. Let

1 1 n (R
(6.1) O4(R,v) = T/ Z - Z Tir(n)S(¢, n; c)w (R’ = v)
1<cg VEE  n#0

for R < T?%¢/d?, where

w(z, A v) = w(|z[;0) 2 (Az;v) - wlrsv) = 7&/1/2(%

First we open the Kloosterman sum S(¢,n;c) and apply the Voronoi formula
(Lemma 2.6) to the sum over n. The computations for the first term and the
second term from the Voronoi formula are similar, so we will just deal with the first
term here.
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We reverse the procedures of partition of unity and extend the sum of ¢, d with
a negligible error. So the contribution from this to O is

1 N 1 dv
Fi = 53¢ 2i) [m k(t) tanh(rt)t 5 /@) Gs(v,t)2(v, 1) -dt
where
2 3 S(0,0e) o~ (€1 .
Z(v,t) = ZZWB” (82?2 _”_”_”>
d=1c=1
and

Biis) = [ Bulaplel*do = o]~ Bus)

where Bj;(s) is defined in (2.10). Thus

= S(4,05¢) = 1

Z(v,t) = £VZHOHTRV (] 4 20 4 2p) Biy(z —o—it—v).

cl+20+2v 92
c=1
Note that since £ is square free,
i S(¢,05¢) To+v(f)
g clt2o+2v — gotv((1 4+ 20 + 2v)
We have
1—2 . o 1 ~ 1 d
F = S0 =20 o / (#) tanh (rt)t —— / G0, )70 s (O Bir (= — 0 — i — v) V.
871'2 — 0o 271 () 2 v

By the Mellin transform (2.11) of the Bessel kernel (shift the v-integral if necessary),
we have
(6.2)

1—2i [ 1 s t)y(l —s—w,t d
Fi = C( ZT) 671/2+zr/ k(t) tanh(mf)t—_ / TG—H}(E) 7(3 +v, )7( _ s$—U, ) UQldt.

—o0 2mi (e) 7(87 t>7(87 t) v

By a similar calculation, the contribution to O from the second term in the Voronoi
formula is

(6.3)

C(L+2i7) | _q/9-; /CQ 1 / Y(s+v,t)y(1 =5 —wv,t) 2dv
= — L h —_— v .
T o2 1 k(t) tan (Wt)t27m, . Totv(£) GG e’ — dt

We will combine F; and F, with similar terms from O’ to give the off-diagonal
main terms.
For the dual sum, define (we have suppressed v from the notation)

Our) = ¥ 5 ¥ s noom. (45

1<e VR 170

8m2

— 00

with

@ (4, A) = / w(, A;v) By (ay)de.
RX
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The contribution from the third term in the Voronoi formula to O4(R, v) is RY/ 2“"”@(1‘2).
Note that for £ < T'/3 and ¢ < (R/T?, we have nR/c? > T°/3. By Lemma 4.1,

_ (. mR R\ MTY“e/c_. \f VIR
Wir (:I:CQ,C2)_(’IIR)1/4\P < A +O( )

Recall that U (2, A) = 0 for A < M*~°T (by Lemma 4.1). Using the formula
for the Ramanujan sum S(n,0;c) = Z mpu (ﬁ) and Proposition 4.2 for U#,
m

ml(n.c)

we have that Og(R) is bounded by the sum of

- MT+
04 (R):\/ZR?’M Z 1/4 Z vm Z 01/2

o<n<t/M?2—¢ m|l+n me YL

and

—~+ MT e T(L+ k) |u(c)]
Os4 (R) = JARa > VI Z vimo Y o172
0<|k|<l/M?—= mlk m(‘<1\4@T

with k = n — £. Note that the n = ¢ term is removed by Proposition 4.2. We may
assume R > T?7¢/{ because otherwise the c-sums have no terms.

- ~+
If £ < M?7¢, then Oy (R) and Oy (R) vanish since the n-sum and k-sum have
no terms. Otherwise, we have

MT/?+e > T(n)T(L+mn) _ (Y2TY/2E

(1/4R1/2 nl/4 < RY/2p11/27
0<n<t/M?—¢

04 (R) <

and

MY/2T1/2+e Z T(k)T(f—l—k) 1/21/2+e

~+
O4 (R) < R1/2 k|12 < RI2M/2

0<|k|<l/M?2—=
Thus the contribution from them to O4(R,v) is bounded by
R_U€1/2T1/2+8

M1/2

Hence its contribution to O(v) is

< Y/2ropl/2—20+epr—1/2.

1 1/240pl/2—20+ —1/2 1/240pl/2—20+ —1/2

d§T1+€

6.2. The off-diagonal term O’. Let

, 1 n {R
(64) Od(R,U) = W Z ZTM— g n; c)w <R7 62, >

1§C<<\/2 n;éO

for R < T%%¢/d?, where

w'(x, A;v) = w'(|z|;0) 2" (Ax; v) w'(r;v) = v(r)

r1/27o'+v :
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This term is handled the same as in O. We open the Kloosterman sum S(¢,n;c)
and apply the Voronoi formula to the n-sum. The contribution from the first term
in the Voronoi formula to O’ is

1((17217)/00k()tanh7rtt—/ G, th'vt) Yt

!
‘Fl 82 -

where

S(¢,0;c¢) ~ {1
2262 217’d1 20’+2’UB' 72’54_0._’”-_1}

d=1c=1
By change of variables,

= 5(4,0;¢) = 1

Z'(v,t) = £7L2moHTRO (L 9 4 20) 1 20420 Bit(i + o —it —v).
Note that since £ is square free,
i S(¢,0;¢c) _ T g10(f) _ To—u(£)
cl=2042v fotv((1 —20 4 20) LoFU((1 — 20 + 2v)’

c=1

Thus we have
(6.5)

1—2i [ 1 5—v,t)y(1 - t d
]:-{ _ C( 2’”—)671/2«%27'/ k(t) tanh(ﬂt)t—_/ TG—U(E)’Y(S v, )’7( _ s+, ) 2 Ud

8 — 00 (e) 7(37t)7(57t)

A similar calculation for the second term in the Voronoi formula gives
(6.6)

CA+2im) |y / 1 / ¥(s — v, t)y(1 f§+v,t) L2 dv
1 S\ T a4v) iT h _U bt
Fy = 52 o k(t) tanh(mt)t— 2 )., To—v(£) G0 G.D dt

For the dual sum, define (we have suppressed v from the notation)

o 1 ~ (nR (R
O,4(R) = Z =2 Z Tir(n)S(€ —n,0; c)w’;r (62, 02)

1<eg \/’IILR n#0

with
Ji'r (y’ A) = / w/(:r, Aa U)BiT (J?y)dl'
]RX

The contribution from the third term in the Voronoi formula to O’ (R, v) is R/ 2*"*”(,93(]%).
Note that for £ < T'/3 and ¢ < (R/T?, we have nR/c? > T°/3. By Lemma 4.1,

,\7' @ giR _MT1_4U+E\E n \/ﬁ /éR 4
w”<i62’02 =T Y \We e ) TeTT

Recall that U* (2, A) = 0 for A < M'~*T (by Lemma 4.1). Using the formula
for the Ramanujan sum S(n,0;c) = Z mp (i) and Proposition 4.2 for U,
m

m|(n,c)

we have that @(R) is bounded by the sum of

— MT1—40'+E
Ou (B) = =i > 1/4 dovmo Y Cl/2

0<n<t/M?2—¢ m|l+n mc<<\/
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and

St MTIioe (+ 1) ()
Oy (B) = Zimmm 2. WZW > an
0<|k|<t/M?2~= m|k VIR

Ml=eT
with k£ = n — . Note that the n = ¢ term is removed by Proposition 4.2. We may
assume R > T?7¢/{ because otherwise the c-sums have no terms.
—~ ~+
If ¢ < M?7¢, then O, (R) and O/, (R) vanish since the n-sum and k-sum have
no terms. Otherwise, we have
MTL/2—40+e Z T(?’L)T(z + n) 61/2T1/2—40+s

(1/AR1/2 nl/4 < TRz
0<n<l/M?2—¢=

me<

0, (R) <

and
M1/2T1/2—4U+E Z T(k)T(f-i— k) 61/2T1/2_40+E

—
0, (R)x Rz ERE < RI/2Z)[1/2

0<|k|<l/M?—=
Thus the contribution from them to O/(R,v) is bounded by
RopL/21/2—40+¢
M1/2
Hence its contribution to O'(v) is

< d201/21/2-20+e r—1/2

1 1/2mp1/2—20+ —-1/2 1/2mp1/2—20+ —-1/2
O D g !PT eM 12 | = O Em2e e p =1/2),

d<Tl+e

6.3. The off-diagonal main term. Making the change of variables v — —wv in
(6.2), the sum of the inner integrals in F; and F] equals the reside at v = 0. Thus
we have

C(L—=247) 104 /:: v(1 - s,t)
Fi+Fl=>———+ T k(t) tanh(mt)t —————=dt
1+ F 52 14 T4 (£) 3 (t) tanh(mt) TG0

By Stirling’s formula
—20—-2iT
7(1 — S, t) t 20—
ws@:(%J FO(ETH .

The O-term contributes O (¢~ 1/?+to=20+1/44 V1) The main term is

82 ™
+ 0(6_1/2+0-T—20+1/4+6M).

. fore) —20—2iT
Fi+F| = M@—l/%—f}Aﬁ)/ k(t) tanh(mt)t (;) dt

— 00

A similar calculation gives

ot 7y = ST i () / k(1) tanh(rt)t YL =50 gy

8 oo v(5,t)
1 2 ) 00 ¢ —20+42iT
- %6*1/%”@(6) / k(t) tanh(rt)t <2) dt
0 o m

+ 0(671/2+UT72U+1/4+5M).
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