
Detecting Topological Change Using a Wireless Sensor
Network

Christopher Farah , Cheng Zhong, Michael Worboys, Silvia Nittel

 Department of Spatial Information Science and Engineering,

University of Maine, Orono, ME, 04469, USA
{cfarah, czhong, worboys, nittel} @spatial.maine.edu

Abstract. Dynamic geographic phenomena, such as forest fires and oil spills,
can have dire environmental, sociopolitical, and economic consequences.
Mitigating, if not preventing such events requires the use of advanced spatio-
temporal information systems. One such system that has gained widespread
interest is the wireless sensor network (WSN), a deployment of sensor nodes –
tiny untethered computing devices, which run on batteries and are equipped
with one or more commercial off-the-shelf or custom-made sensors and a radio
transceiver. This research deals with initial attempts to detect topological
changes to geographic phenomena by an environmentally deployed wireless
sensor network (WSN). After providing the mathematical and technical
preliminaries, we define topological change and present in-network algorithms
to detect such changes and also, to manage the WSN’s resources efficiently.
The algorithms are compared against a resource-heavy continuous monitoring
approach via simulation. The results show that two topological changes, hole
loss and hole formation, can be correctly detected in-network and that energy is
greatly saved by our event-driven approach. In future work, we hope to test the
algorithms over a broader range of topological changes and to relax some of the
network assumptions.

Keywords. Wireless sensor networks, distributed, algorithm, topological
change, areal object.

1 Introduction

Dynamic geographic phenomena, such as forest fires and oil spills, can have dire
environmental, sociopolitical, and economic consequences. Mitigating, if not
preventing such events requires the use of advanced spatio-temporal information
systems. One such system that has gained widespread interest is the wireless sensor
network (WSN), a deployment of sensor nodes – tiny untethered computing devices,
which run on batteries and are equipped with one or more commercial off-the-shelf or
custom-made sensors and a radio transceiver. Beyond catastrophe management, it is
expected that WSNs will play a key role in ubiquitous spatial computing, offering
researchers and application domain specialists unprecedented opportunities in
environmental sensing, monitoring, and analysis. In contrast to other sensing
technologies, e.g. LIDAR, a WSN is not restricted to particular types of phenomena: a

 Christopher Farah , Cheng Zhong, Michael Worboys, Silvia Nittel

WSN can detect any measurand – a physical parameter, such as light intensity,
temperature, or ozone – so long as the corresponding sensor has been developed, and
the device can withstand the deployment region’s environmental conditions. Given a
fixed deployment of sensor nodes over a geographic region, one of two monitoring
paradigms can be adopted: continuous monitoring or event-driven monitoring. In the
former, every sensor node in the network samples the environment at a constant rate.
In the latter, a sensor node’s level of activity is affected by local changes in the
measurand. While continuous monitoring offers the best responsiveness possible, it
does so at the cost of network resources, i.e. power consumption, and temporal
resolution of the environmental data. In the case of event-driven monitoring, regions
of low sensor activity demand less of the network’s processing, allowing resources to
be dedicated to those regions of high activity. By shutting down nodes, however,
resolution and responsiveness can decrease. Thus, either approach leads to a
compromise in monitoring.

In this paper, dynamic topological events with regard to continuous spatial
phenomena, events such as hole formation and merging, govern the activity of the
network. The motivation is three-fold: (1) to provide a framework for the
classification of environmental phenomena by topological behavior, (2) to reduce the
cost of data transmission and in-network information processing, and (3) to optimize
the number of active nodes through a tiered network. To achieve these goals, nodes
are assigned to clusters - geographic subsets that partition the region of deployment.
For each cluster, one node is promoted to the rank of cluster head. By virtue of this
hierarchy, updates can be coordinated via cluster heads, allowing the network to
“keep up” with global topological changes.

In summary, the contributions of this paper include the following:
• Algorithms for topological event detection in WSNs.
• Algorithms for dynamic resource management.
• Evaluation of proposed algorithms in comparison with the continuous

monitoring approach. Events are detected correctly and network energy is saved.
The remainder of the paper is organized as follows. Section 2 provides

mathematical and technical preliminaries and summarizes related work. Section 3
describes our approach for event detection in dynamic sensor networks. In section 4,
the algorithms for network management and event detection are described in detail.
Section 5 outlines the simulation approach to test our algorithms and discusses the
corresponding results. Finally, we conclude this paper and discuss future work.

2 Mathematical Preliminaries and Related Work

2.1 Mathematical Preliminaries

A scalar field is a spatial domain R, such that for each point p∈R, there is a unique
scalar value, sp, assigned to p. In this work, it is assumed that R is planar and that a
sensor node associated with point p detects sp with complete precision. For example,

Detecting Topological Change Using a Wireless Sensor Network

in the case of forest fire monitoring, each point in the region of network deployment
resides in a scalar field where temperature is the scalar value. In order to derive
topological events from the scalar field, a threshold value is designated relative to the
sensor readings, invoking a Boolean response for each point in the spatial domain.
Thus, the scalar field is discretized; rather than a continuous range of scalar values,
there are precisely two values, 0 and 1. This discretized field is approximated by the
network; the resolution depending upon the density of nodes in the WSN, and the
proportion that are active. Figure 1 shows the progression from a scalar field to its
discretized approximation. This particular example is derived from aerial images of an
oil spill off the coast of Spain.

Fig. 1. From scalar field to the discretized, WSN approximation

Let us consider that part of the domain whose corresponding scalar values are 1. This
is an areal object [1] and consists of one or more connected components (components
for simplicity) of R, i.e. regions in which any two points in one such region can be
joined by a path, completely contained in the region. Each component has topological
properties that can be determined. For the purpose of this investigation, the properties
of greatest interest are connectedness and genus, which is a count of the number of
holes in a component. The motivation is simple: by keeping track of these two
properties over consecutive sensor samples, six atomic topological changes can be
identified. A topological change is a change to an areal object such that there is no
homeomorphism between the areal object in its initial state and its final state. Thus, a
topological change occurs if an areal object, by virtue of the discretized scalar field’s
evolution over time, changes status with regard to one or more topological properties.
In this paper, “topological change” and “event” are synonymous. The atomic changes
to be detected are:

• hole formation / hole loss
• self-split / self-merge
• split / merge

As can be seen in Figure 2, the genus has changed for the cases: hole formation,
hole loss, self-split, and self-merge. For the final two topological changes, split and
merge, the property connected has changed but not the genus. Jiang and Worboys [1]
have proved that any topological change resulting from changes only in genus and

 Christopher Farah , Cheng Zhong, Michael Worboys, Silvia Nittel

connectedness can be expressed as a composition of those above. Therefore, it will
suffice to deal with atomic topological changes.

Fig. 2. The six primary topological changes

An incremental change to a WSN is the change of sensor status, relative to

threshold, of a single node over the entire network at a time t. Such a change will
result in zero or more topological changes. In order to capture the changes outlined
above, the neighborhood ring is introduced. The neighborhood ring is a cyclic data
structure stored at a node that maintains its nearest neighbor readings in
counterclockwise order. In order to identify its neighbors, a node broadcasts a
message at some user-defined fraction of the communication range of the node.
Neighbors within this range will have a corresponding entry in their neighborhood
ring. Let u be a node and v1, v2, …, vk be the k one-hop neighbors of u within a
predefined distance, sequenced in counterclockwise cyclic order around u, where a
starting node v1 is randomly assigned in advance. The neighborhood ring associated
with u is a ring data structure [s1, s2, … , sk], starting from v1 where si is the sensor
reading of vi, which are mapped to the Boolean values 0 and 1 as previously described.
Figure 3 shows a node u and its neighbors, the underlying discretized scalar field in
gray, and two equivalent neighborhood rings. A neighborhood ring - not unlike the
connected components of the spatial domain – can be thought of as a collection of
contiguous subsequences, i.e., sequences of the form [0,…1,1,…,1,…,0] or
[1,…1,0,0,…0,1,…,1], since the neighborhood ring is cyclic, i.e. it can start at any
neighboring node. Such a contiguous subsequence is called a neighborhood
component, and indicates a region of similar sensing. Two neighborhood components
are indicated in Figure 3 by dashed rectangles and each can be identified as a
sequence of 1s in each neighborhood ring. In order to determine which topological
change has occurred, a node that has changed status will initiate a series of tests based
upon the neighborhood components of its neighborhood ring.

Fig. 3. Two equivalent neighbor rings of node u

Detecting Topological Change Using a Wireless Sensor Network

2.2 Network Assumptions

A distributed computing environment is one in which multiple computing devices or
nodes (often) operate in parallel and achieve a common goal by processing available
data (when appropriate) in a cooperative fashion, thereby passing the intermediate
result as a message to other nodes. Two interesting properties of a distributed WSN
are: (i) there is no global clock, and (ii) only local data is stored at a node. The
consequences of (i) are that: classic synchronization can not be used to order
computations and many events will be temporally incomparable, i.e. it will not be
possible for any node to correctly determine the order of topological events, even if
the events are temporally ordered in the environment. The consequence of (ii) is that
no node has a global view of the network. This does not mean global properties
cannot be computed, but that no node has all of the raw data necessary to execute
such a computation. While explicit reference to these properties will not be made, it is
interesting to bear them in mind in the development that follows.

In addition to the generic distributed system assumptions, we make five additional
assumptions related to the operation of the WSN in this research. They are:

1) Neighboring nodes of the same status belong to the same component.
2) Non-neighboring nodes of the same status belong to the same component

only if there is a node path between them, such that each node on the path
has the same status.

3) Each node knows its own location through either a GPS device or some GPS-
less techniques [2, 3], as well as the angle-of-arrival of packets.

4) A node stores its previous and current sensor reading relative to threshold, its
neighbor ring, as well as the ID.

5) A node that has been promoted to cluster head stores all data noted above, as
well as the genus, the node ID of each adjacent cluster head, and any
temporary data structures (See Section 3.1.) needed to complete
computations.

The first two assumptions allow sensor data to infer properties of the underlying
scalar field. It is easily proved that assumption (2) follows from assumption (1) but it
is stated on its own for clarity. Assumption (3) ensures that each node can identify the
cluster it belongs to and that a well-ordered neighbor ring can be constructed.
Assumptions (4) and (5) ensure that correct topological event detection can be carried
out. In particular, if a split or merge occurs, region IDs need to be updated at each
node, while a genus update is required for the remaining four topological changes.

2.3 Related Work

2.3.1 Topology Discovery
Current research in hole detection using WSNs has primarily focused on the
characterization of the communication graph within the network, i.e. a graph whose
vertices are sensor nodes and edges are communication links between sensor nodes.
In particular, research has been conducted in order to ensure the effective routing of
messages, even in the presence of holes in the communication graph. In [4], the

 Christopher Farah , Cheng Zhong, Michael Worboys, Silvia Nittel

author presents a solution to the problem which requires more computational power
than is typically assumed of sensor nodes, and therefore could not be implemented in
a distributed setting. Clearly, for long-term unsupervised deployments, a more robust,
decentralized solution is needed. In [5], hole detection is distributed and decentralized.
However, a ‘flat’ routing approach is applied in order to define and update each hole’s
boundary. In other words, data is simply passed via nearest neighbors. While this may
be feasible in maintaining the topology of a slowly changing communication graph,
the topology of the underlying scalar field is likely to evolve much more rapidly.
Additionally, there are different algorithmic expectations: holes in the communication
graph result in node failure and therefore, a loss of spatial resolution, while holes in
spatial phenomena only result in a change in sensor value, but not the failure of the
sensor node itself. Therefore, more efficient and appropriate update techniques are
proposed in this work.

The prerequisite for topological change detection is boundary detection in the
network. Chintalapudi and Govindan [6] discuss three boundary detection methods
and return sufficient data so that the base station can construct an accurate boundary.
They do not however, transmit boundary information back into the network,
preventing the possibility of localized, in-network updates of the boundary shape and
its location. Ding et al. [7] propose localized fault-tolerant boundary and faulty sensor
detection using spatial data mining techniques. These techniques have to report all
boundary node information to the base station: the topological changes can only be
deduced at the base station, after it generates different field snapshots using received
data. As in [1], such techniques are not tractable in the case of remote deployments. In
this paper, region boundary detection is based on neighboring node value differences:
a boundary exists between two nodes if their sensors detect different measurand
concentrations, relative to the designated threshold. Based on the detected boundary,
all changes are deduced in the network and then are reported back to the base station,
on user demand.

2.3.2 Resource Management
In WSNs, particularly for long-term deployments, energy conservation is critical. If
communication is not dealt with carefully, then network resources can be
unnecessarily expended, which is the largest energy consumer in a sensor network.
For example, even if a node broadcasts data intended for a few selected neighbors,
every node within transmission range and operating on the same channel must receive
and process each packet, whether the packet has computational importance or not.
Chen et al. [8] show that the energy consumption ratio, idle:receive:transmit is 1: 2:
2.5. This observation motivates approaches that either reduce the number of active
nodes or reduce node contention. Xu et al. [9] develop a geographic adaptive fidelity
(GAF) algorithm, which can be implemented in conjunction with any ad-hoc routing
algorithm. GAF identifies “equivalent nodes” from a routing perspective: two nodes
are equivalent if the cost of routing messages through one is the same as the other.
Thus, the network is partitioned into virtual grids. Within each grid, most nodes can
be set to sleep, so long as they are not a source, sink or critical intermediate node
within the routing chain. Simulation results demonstrate savings of 40-60% as
compared with unmodified ad-hoc routing protocol. Zhang and Cao propose DCTC
[10] for target tracking in WSNs. A tree structure is constructed for moving target

Detecting Topological Change Using a Wireless Sensor Network

tracking. It uses a prediction-based schema for tree expansion and pruning. Only
nodes near the target are activated. While effective for target tracking, this approach
does not address topological changes to the discrete scalar field. In [11], an advanced
sweep algorithm is implemented in order to activate sensor nodes in front of an event
wavefront and to deactivate sensor nodes behind the wavefront. The algorithm is
implemented in a small network consisting of Mica2 MOTES and demonstrates
effective detection of the wavefront while conserving network resources. However, as
the author states, the topological sweep algorithm does not admit a distributed
approach. Duckham et al. [12] describe a triangulation approach for monitoring
dynamic fields. The sensor network is triangulated and most sensors that are not in the
event regions are deactivated.

In this paper, a combination of traditional clustering is used in conjunction with
GAF in order to ensure network energy conservation without compromising event
detection. Specifically, sensors along the boundary of different regions are activated
to detect the boundary’s evolution, while sensors that are in low activity regions and
are not critical in terms of routing are deactivated. When coupled with our local
topology discovery approach, the efficient reporting of topological change becomes
feasible.

3 Event Detection in Sensor Networks

3.1 Event Detection

The goal of this research is to efficiently detect the topological changes outlined in 2.2,
through distributed computations in a distributed WSN. Each of the topological
changes implies that the corresponding phenomena’s boundary has undergone a
dynamic change. The node set approximating the boundary will also change, so long
as network resolution is sufficient. It follows that those incremental changes of
importance occur at the boundary or create a new boundary. Thus, changes to
boundaries allow each of the topological changes to be detected. For the sake of
simplicity, only incremental changes will be tested via simulation. This can be
justified since: (1) the change in sensor value (relative to threshold) of a single node
can result in any of the six topological changes under investigation, and (2) methods
to compute non-incremental change as an extension of incremental change will be
outlined.

In Figure 4, two regions, R1 and R2, are illustrated, along with three nodes that
have changed status and must compute if a topological change has occurred.
Assuming that each node stores the ID of the region it belongs to, in the best case, the
outcome can be determined on the basis of the neighborhood ring and subsequent
neighbor components. This is true for hole formation, hole loss, merging, and self-
merging. Consider node u, shown in Figure 4. As a hole forms in the region
monitored by the node, its sensor detects this change, and hence node u uses its
neighborhood ring to determine the kind of change. Since its neighborhood ring is of
the form [1,1,…,1], even without region ID, node u identifies that the change is a hole

 Christopher Farah , Cheng Zhong, Michael Worboys, Silvia Nittel

formation. Hole loss is similar, except that node u proceeds from a sensor value of 1
to 0. Node v illustrates a merge, which can be determined by the combined facts that:
(1) the neighborhood ring consists of multiple neighborhood components (above
threshold) and (2) the ID differs between two or more components. If region ID were
the same, then the change would be a self-merge. In the case of splitting and self-
splitting, region ID and neighbor data is not sufficient. Consider node w as an
example. By observation, a self-split is taking place since node w’s sensor status
change has not split the region into multiple components. Node w however, will not
know this until it confers with the nodes of this region. In contrast to a merge or self-
merge, prior to a split or self-split, all nodes belonging to the region will store the
same region ID (R1 in this case) regardless of the event type. So, node w must pass a
message through the region to determine if it has an irreducible cycle – a broadcast
cycle passing through nodes of status 1, such that the cycle can’t be trivially reduced
without passing through a node of status 0. In particular, a cycle discovery message is
passed to one node of each neighborhood component. Each receiving node in turn
passes the message to a node in each of its neighborhood components. If a node
receives messages originating from different neighborhood components of the
initiating node, then an irreducible cycle exists. Part of this process is illustrated by
the smaller, transparent circles in the figure. In this case, Node x receives messages
from different neighborhood components of Node w. Thus, an irreducible cycle has
been identified and therefore, the event is a self-split. Node x of course must relay this
to Node w.

Fig. 4. One topological change from each of the three categories

This process is repeated until a node can no longer propagate the message, or a

node has received multiple messages. If the latter occurs, as it would above, then an
irreducible cycle exists. Thus, the topological change is a self-split. Otherwise, the
change is a split.

In the case of non-incremental changes, the network is prone to non-scalable
behavior and data conflict. To emphasize this, let us compare a non-incremental
change without the use of assumption (5) to the same change with the use of
assumption (5). We will refer to Figure 5, which displays nodes u and v that have
changed status; cluster heads A, B, C ,and D; unnamed nodes; and communication
links, labeled with the transmission round. A transmission round such as 2v indicates
the second round of transmission relative to node v. If there is no subscript, it
indicates that the order of transmission has been coordinated by the collaborating
cluster heads. A network without cluster heads is illustrated in the left pane of Figure

Detecting Topological Change Using a Wireless Sensor Network

5. Here, nodes u and v change status, compute any topological changes, and pass the
update through the component. The first two rounds of message passing are shown.
Two problems arise. The first is that the number of nodes requiring updated genus
data is significant: all of the nodes in the grey region. The second problem is that
intermediate nodes (lying between the rippled lines) will receive conflicting data
regarding the topological state of the region: node v reports the loss of a hole while
node u reports the gain of a hole. By admitting assumption (5), the network is
clustered as in the right pane of Figure (5). Node u reports a change to its cluster head
A, which in turn reports to the affected adjacent cluster heads B, C, and D. Node v
senses a change and reports this to cluster head C. Cluster head C reports one required
update to node A, while cluster heads B and D broadcast no such report. Cluster head
A orders the queue, first by cluster {A, C}, then by node – in this case {u, v} – and
passes the data to node u in the third round. Node u makes a partial computation,
passes it to cluster head A, which in turn passes the partial result to cluster head C.
Cluster head C passes the computation to node v, which completes the computation,
and unicasts the final result to cluster head C. By the eighth round, cluster head C
multicasts the updated genus to cluster heads A, B, and D. The first eight rounds of
message passing are shown in the figure. In order to limit network noise, the multi-
channel capability of the sensor nodes is exploited: in addition to the general
broadcast channel, there is a cluster-head channel, a channel for each sensor value,
and four channels assigned to clusters, so that no two adjacent clusters have to operate
on the same bandwidth. As a result, unsolicited nodes do not receive broadcasts, and
therefore, do not waste energy on processing packets.

Fig. 5. A flat approach on the left and a tiered approach on the right

Since each cluster in the tiered approach behaves like a node in the flat approach, a

2-level network is “more scalable” but not truly scalable: cluster size, and the number
of tiers are governed by the expected “size” of the topological events. This will be
investigated in greater detail in future work in order to correlate event size with
required level of network tiering.

 Christopher Farah , Cheng Zhong, Michael Worboys, Silvia Nittel

3.2 Resource Management

Since the WSN’s nodes are battery powered and have limited processing capability,
economizing network resources is key. However, such economization should not
undermine the network’s key goal: topological event detection. To ensure a balance
between event detection and resource economization, the network must be event-
driven, thereby allowing for increased data resolution in areas of topological activity.
While a continuous-monitoring network cannot vary its resolution or consumption of
network resources, it is capable of responding to changes rapidly, since all nodes are
active. The challenge in an event-driven network is to find an acceptable level of
responsiveness.

In order to meet the needs outlined above, the network is tiered. We design a 2-
level hierarchy network, as in the right pane of Figure 5. The upper tier network
consists of cluster heads. The lower tier network is composed of all nodes in each
cluster. If there are no events near a cluster, only the cluster head is active. All other
nodes in the cluster can be in sleep mode, thereby conserving energy. Each pair of
nodes in adjacent clusters is reachable to each other, ensured by transmission range
setting.

We separate the whole network into uniform, rectangular clusters. The diagonal of
each cluster is less than half the radio range in order to ensure each pair of nodes in
adjacent clusters has the ability to communicate with each other. The clusters are
fixed after network initialization. Assuming nodes are GPS-equipped, they can
compute their geographic position, and therefore, the cluster they lie in. Each cluster
has a designated cluster head, which is responsible for node activation. A node can
deactivate itself if it does not detect any interesting activity.

Each node in the network can be in three states. In the sleeping state, a node does
not send or receive any messages from others. This brings the most power saving to
the network. In the listening state, a node can receive its neighbors’ messages to
determine if it should turn itself to active state but does not transmit messages. In the
active state, a node collaborates with other active neighbors to monitor physical
events and changes. The state transition graph of a node is shown in Figure 6. In
Figure 6: (0) A node boots up. (1) A node periodically changes from active to
listening mode, if there is no reading difference between the node and its neighbors
over a time t1. (2) A node periodically changes from listening to sleeping mode after a
predefined time t2. (3) A node changes to active state after it receives an activate
message. (4) A node goes to listening after sleeping for a time t3. More details about
the node activation and deactivation will be explained in section 4.2.

Fig. 6. State change graph

Detecting Topological Change Using a Wireless Sensor Network

4 Algorithms

Three algorithms will be presented, covering: cluster head election, node management,
and topological event detection.

4.1 Cluster Head Election

We use a randomized algorithm to select cluster heads. Each node in a cluster
randomizes a short timer [13]. After the time out, if the node does not receive a
suppression message from a cluster head, it becomes the cluster head and broadcasts a
suppression message to inform all other nodes in the cluster. Since the cluster head is
the only activated node in a cluster, its battery will discharge more quickly than other
nodes’ batteries. Thus, we promote a new cluster head after the battery power is lower
than a designated threshold. If a cluster head’s power drops below a threshold value, it
periodically sends a request message with its residual energy information to all
neighbors in the cluster. All nodes in listening state can receive this message. After
receiving the message, a node that has more energy will randomize a short timer.
After the time out, if it does not receive a new suppression message from other nodes,
it becomes the new cluster head and broadcast a suppression message to all other
nodes in the cluster.

4.2 Node Activation/Deactivation

Each node in a cluster is activated by the cluster head and it is self-deactivated based
on the reading difference. At initialization, all nodes are in active state. Each cluster
head also receives readings from, and broadcasts readings to, neighboring cluster
heads. If they are all above - or below - the threshold value, no change is detected and
the corresponding cluster nodes will not be activated. If a neighboring cluster head
has a different Boolean response relative to threshold, then an event boundary must
exist between them. In this case, the cluster head broadcasts messages to activate all
nodes in its cluster. Each node, after entering the listening mode, can receive the
activation request and turn itself to active state. A node in the active state will
periodically compare its reading to neighbors. If there are some differences between
them, it remains active for event detection. Otherwise, if there is no difference (no
change) after a user specified period, it enters to listening mode for a while. If it does
not receive further activation messages, it proceeds to sleep state, and then
periodically alternates between listen and sleep states. The algorithm for node
activation and deactivation is shown in algorithm 1.
While (1)

{
if (in sleeping mode)

After a short time T3, go to listening state;
else if (in listening mode)

 if (receives an active message)
 Go to active state;

 Christopher Farah , Cheng Zhong, Michael Worboys, Silvia Nittel

 else
 Go to sleeping state after a short time T2;
 else if (in active mode)

if (no reading differences between any neighbors)
 Go to listening mode after a short time T1;
}

Algorithm 1. Non-cluster node activation and deactivation

4.3 Event Detection

In this section, we discuss the algorithm for event detection. If a node changes status
with respect to threshold, it tests for the easiest topological changes first, and then
proceeds in order of difficulty. If the neighborhood ring is uniform, then the
topological change is either hole loss or hole formation. If however, the neighborhood
ring is not uniform, the node checks first for non-topological changes (not outlined in
this paper), and then for the topological changes merge and self-merge. If neither
event is possible, the node broadcasts a message in order to discover any irreducible
cycles. If there are such cycles, the event is a self-split, and otherwise, the event is a
split. It should be noted that the algorithm is written for nodes that do not lie on the
boundary of the network. While the modifications necessary to include boundary
nodes are reasonable, they are not included below.
While (1)

{
if (sensor status changes)

 Check neighborhood ring;
 if (uniform)

if (sensor status of node is 1)
Event: hole loss

 else
Event: hole formation

elseif (one neighborhood component)
Non-topological event

else
Check neighborhood components’ region IDs
if (multiple region IDs)

Event: merge
 else if (one region ID)
 if (sensor status of node is 1)

Event: self-merge
else

Check for irreducible cycles
if (irreducible cycles)

Event: self-split
else

Event: split
}

Algorithm 2. Event detection algorithm

Detecting Topological Change Using a Wireless Sensor Network

5 Simulation and Discussion of Results

5.1 Simulation

We evaluated our algorithms using NS2 [14], open source, network simulation
software. NS2 contains standard API that facilitates the development of a network
model at the network level, the node level, and the process level. In addition, many
research groups have made their custom node and network models available, thereby
expediting the development of future work, such as ours. In the simulation, a 100m by
80m WSN that consists of 400 nodes with 20 clusters is constructed. Each cluster is a
20m by 20m grid and there are 20 evenly distributed nodes in each. As specified in
section 3, we assume nodes in adjacent clusters can communicate directly. In order to
achieve this assumption, the node communication radius is set to 57m. Each node
saves its nearest 8 neighbors’ information around it in the neighborhood ring. The
event-detection algorithm is applied in conjunction with both continuous and event-
driven monitoring approaches. In the case of continuous monitoring, each node is
active throughout the entire simulation interval. As discussed in the related work,
even an idle node consumes a good deal of energy. Hence, the greatest savings only
result from deactivating nodes. Thus, to measure network savings, it suffices to
determine, and compare, the percentage of active nodes between the two approaches.
Furthermore, the time taken to detect topological change is computed as a metric for
network responsiveness.

Fig. 7. One cluster at t=10s, 20s, 30s, and 45s

Table 1. Active node count at t=10s, 20s, 30s, and 45s
 Continuous approach Event-driven approach
T=10s 400 191
T=20s 400 191
T=30s 400 191
T=45s 400 20

Over the course of a single simulation run, the network is initialized at t=1s. An

areal object forms in the middle of the field at t=2s and continues to grow. A hole
emerges in the areal object at t = 20s, and grows until t=25s, when it begins to shrink.
At t=30s, the hole disappears. Then, the areal object continues to shrink and
disappears at t=44s. In this scenario, sensor nodes that are active sample the
environment once per second. From the simulation results, the areal object which
forms at t=2s is detected at t=4s, after it covers a cluster head. After detecting the

 Christopher Farah , Cheng Zhong, Michael Worboys, Silvia Nittel

areal object, the cluster head activates all nodes in its cluster and notifies adjacent
cluster heads. Other topological changes, the hole formation at t=20s, the hole loss at
t=30s, and the disappearance of the areal object at t=44s are all detected immediately.
In the continuous approach, all topological changes are detected immediately after
they happen. We also compare the number of active nodes between the continuous
and event-driven approaches at some time snapshots t=10s, 20s, 30s, and 45s. The
results are shown in Table 1. Clearly, the continuous monitoring approach keeps all
nodes in active state, but the event-driven approach keeps only a few nodes in active
state all the time, which means larger energy savings for the entire network.

5.2 Discussion

In the simulation, all topological changes are detected correctly in the network, which
means our event detection algorithms works for both event-driven approach and
continuous approach. Compared to previous base station based approaches [4, 11],
such in-network detection is one of the most significant contributions of our work.
Node will report changes to the base station which need no future process at the base
station side.

By the event-driven approach, as indicated by the simulation results, the areal
object appears at t=2s, but it was not detected before t=4s when the areal object covers
a cluster head, which means the event-driven approach may decrease the
responsiveness of the network. In comparison, the continuous approach allows for
instant detection at the cost of network resources. While an event-driven approach is
necessary to handle lengthy, remote deployments, it is inevitable that energy
conservation sacrifices resolution and responsiveness to some degree. In particular,
when a topological change occurs in a cluster that has been set to sleep, it will go
unnoticed until the cluster head itself detects it. Clearly, as the cluster size decreases,
responsiveness and resolution increase. However, network resources would be
compromised, as in the continuous monitoring case. There should be a trade-off
between responsiveness and the energy consumption. If we need better
responsiveness, we can set small cluster size. If the responsiveness is not very crucial,
a larger cluster size could be used. Bounds on cluster size relative to event detection
will be addressed more thoroughly in future work.

6 Conclusion and Future Work

This paper presents algorithms for topological change detection in a WSN using event
driven approaches. Different from previous approaches, we focus on detecting
topological changes of areal objects monitored by the WSN. A neighborhood ring
data structure is proposed for in-network event detection. By our event detection
algorithms, topological changes can be detected directly in the network, other than
computed at the base station after receiving all reporting messages. Each node does
not have to send readings to the base station for processing. This characteristic is one
of the most significant differences compared to traditional approaches. By our event-
driven approach for network management, not all nodes are required to be in the

Detecting Topological Change Using a Wireless Sensor Network

active mode all the time and then the network energy is saved greatly. The simulation
results show that our event-driven approach deactivates some nodes in the network
without decrease responsiveness significantly. The event detection algorithms
proposed also detect all topological changes correctly in the network.

Our current simulation does not include split and self-split and the detection of such
changes need global broadcasting using current algorithms via the irreducible cycles.
In future work, the topological changes split and self-split will be addressed and we
are trying to reduce such global broadcasting. Furthermore, non-incremental changes
need to be simulated to confirm that a tiered approach effectively handles more
complicated, non-atomic topological changes. This would include the correct
assignment of a component’s ID, as well as passing off partial computations between
clusters.

Acknowledgements. This material is based upon the work supported by the US
National Science Foundation under Grant Nos. IIS-0534429 and IIS-0429644.

References

1. Jiang, J., Worboys, M.: Event-based topology for dynamic planar areal Object. Technical
report, University of Maine (2007)

2. Cheng, X., Thaeler, A., Xue, G., Chen, D.: TPS: A time-based positioning scheme for
outdoor wireless sensor networks. In: INFOCOM, pp. 268--2696 (2004)

3. Shang, Y., Ruml, W., Zhang, Y., Fromherz, M.P.J.: Localization from mere connectivity. In:
MobiHoc, pp. 201--212(2003)

4. Funke, S.: Topological Hole Detection in Wireless Sensor Networks and its Applications. In:
Proceedings of 3rd ACM/SIGMOBILE International Workshop on Foundations of Mobile
Computing (DIALM-POMC), Cologne (2005)

5. Fang, Q., Gao, J., Guibas, L.: Locating and Bypassing Holes in Sensor Networks. Mobile
Networks and Applications, vol. 11, pp. 187--200 (2006)

6. Chintalapudi, K., Govindan, R.: Localized edge detection in sensor fields. Ad Hoc Networks,
vol. 1, no. 2-3, pp. 273--291 (2003)

7. Ding, M., Chen, D., Xing, K., Cheng, X.: Localized fault-tolerant event boundary detection
in sensor networks. INFOCOM, pp. 902--913 (2005)

8. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R. Span: An energy-efficient coordination
algorithm for topology maintenance in ad hoc wireless networks. In: Proceedings of the
ACM/IEEE international conference on Mobile Computing and Networking, July, (2001)

9. Xu, Y., Heidemann, J., Estrin, D. Geography-informed Energy Conservation for Ad-hoc
Routing. In: Proceedings of the Seventh Annual ACM/IEEE International Conference on
Mobile Computing and Networking, pp. 70--84 (2001)

10. W. Zhang, G. Cao. DCTC: Dynamic Convoy Tree-Based Collaboration for Mobile Target
Tracking. IEEE Transactions on Wireless Communications, vol. 3, no. 5, 1689-1701 (2004)

11. Liu, J., Cheung, P., Guibas, L., Zhao, F.: A Dual-Space Approach to Tracking and Sensor
Management in Wireless Sensor Networks. WSNA, pp. 131--139 (2002)

12. Duckham, M., Nittel, S., Worboys, M.: Monitoring dynamic spatial fields using responsive
geosensor network. In: Proceedings of the 13th annual ACM international workshop on
Geographic information systems, pp. 51--60 (2005)

13. Meng, X., Li, L., Nandagopal, T., Lu, S.: Event contour: an efficient and robust mechanism
for tasks in sensor networks. Technical Report, UCLA (2004)

14. The Network Simulator – NS2, www.isi.edu/nsnam/ns

