
The Journal of Systems and Software 83 (2010) 1500–1511
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss
Historical index structure for reducing insertion and search cost in LBS

Young Jin Jung a,*, Keun Ho Ryu b,**, Moon Sun Shin c, Silvia Nittel d

a Korea Institute of Science and Technology Information, South Korea
b Chungbuk National University, South Korea
c Anyang University, South Korea
d University of Maine, USA

a r t i c l e i n f o
Article history:
Received 13 March 2009
Received in revised form 15 March 2010
Accepted 16 March 2010
Available online 21 March 2010

Keywords:
Moving object index
Separated buffer node
Projection storage
0164-1212/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.jss.2010.03.041

* Correspondence to: Y.J. Jung, Department of Cybe
Supercomputing Center, Korea Institute of Science and
Gwahangno, Yuseong, Daejeon 305 806, South Korea.
207 581 2206.

** Correspondence to: K.H. Ryu, School of Electric
Chungbuk National University, Cheongju, Chungbuk 3

E-mail addresses: yjjung@kisti.re.kr (Y.J. Jung),
(K.H. Ryu).
a b s t r a c t

A major issue in LBS (Location Based Service) is the handling of numerous historical moving object data,
affecting query performance and service quality in application systems. In order to store and search lots
of data rapidly, an effective index structure is required for improving not only the insertion method, but
also the search performance.

In order to improve the performance of both applications, we propose the GIP+ (Group Insertion tree
with Projection Plus) for historical data management such as the trajectory of a vehicle. This index struc-
ture, based on the GIP, employs the separated buffer node method for reducing overlaps. The GIP+ also
uses projection storage for improving search performance by grouping the intersected child node in a
node. Additionally, the link between the buffer nodes is designed to directly connect to the next buffer
node. To effectively combine these methods and improve the performance, different node levels in the
GIP+ are also arranged for applying the separated buffer node, the projection storage, and the link. The
designed historical index structure is useful for inserting and searching data which is arranged on a time
axis.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Since the beginning of history, maps have been utilized to repre-
sent the positions of spatial or moving objects and subsequently, al-
lowed considerable social progress through travel, exploration, and
transportation. With the advancement of technology, there has
been a growing need for maps to locate information. It is a challenge
to create effective maps for these purposes, especially since the
information itself, data, frequently moved over time. These moving
objects have the property of continuously changing their positions
and/or shape over time (Forlizzi et al., 2000; Wolfson et al., 1998).
Managing the numerous historical moving object data is very
important in various historical data management applications of
LBS (Location Based Service), because the data is endlessly accumu-
lated over time. Therefore, the systems require an effective index
technique to search multiple spatial and non-spatial elements. Re-
search on such indices for moving objects has been published (Mok-
ll rights reserved.

r Environment Development,
Technology Information, 335

Tel.: +1 207 581 6104; fax: +1

al & Computer Engineering,
61 763, South Korea.
khryu@dblab.chungbuk.ac.kr
bel et al., 2003) which obtain useful ideas from the studies for
spatial data such as the R-tree (Guttman, 1984) and B-tree. Several
index techniques (Pelanis et al., 2006) are proposed for dealing with
the historical, current and future positions of moving objects. Still,
there is a need for better methods and because inserting data occurs
more frequently than searching data, it behooves researchers to
find ways to reduce insertion costs as well as search costs (Mokbel
et al., 2003).

Challenges of the historical data management includes the bulk
loading, the uncertainty management, the topological analysis, the
update strategy, the packing, the clustering, the movement pattern
analysis, and the effective data search for a time slice query, a spa-
tiotemporal range query, and a trajectory query. For example,
these techniques are widely used for LBS applications such as the
analysis of the historical route of the bank burglar, the cargo trans-
portation optimization, and the vehicle movement pattern analysis
in a city. In this paper, we focus on the bulk loading, the data search
for a time slice query and a range query. Traditionally, the R-tree
inserts data by OBO (one by one) technique which loads data into
an index in a sequential way (An et al., 2003). However, OBO needs
more cost for insertion. Especially, the OBO method is not effective
in a moving object management application, because a huge vol-
ume of moving object data is continuously created over time. To
improve the loading efficiency, various bulk loading strategies
have been proposed (Chen et al., 2002) such as packing (Kamel
and Faloutsos, 1993), STLT (Chen et al., 2002). However, the bulk

http://dx.doi.org/10.1016/j.jss.2010.03.041
mailto:yjjung@kisti.re.kr
mailto:khryu@dblab.chungbuk.ac.kr
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

Y.J. Jung et al. / The Journal of Systems and Software 83 (2010) 1500–1511 1501
loading method sometimes makes some problems to reduce the
search performance such as overlaps. Reducing overlaps is re-
quired for rapidly accessing a large volume of data. In particular,
in the R-tree based indices, it is crucial to minimize dead spaces
and overlaps during data insertion, because the reduced overlaps
are useful for improving their search performance (Lee et al.,
2003). So, an effective index structure is needed to improve not
only the loading efficiency but also the search performance.

We designed the GIP+ (Group Insertion tree with Projection
Plus), which is based on the GIP (Jung and Ryu, 2006a) as a one
of approaches which effectively combine useful insertion and
search methods. The GIP+ employs the separated buffer node
method for minimizing overlaps and the projection storage for
quickly processing a time slice query. The GIP+ also uses the link
between the buffer nodes to improve search performance for a spa-
tial range query, which searches all trajectories included in the
rectangle of the range. The proposed index structure is used for
handling historical data accumulated over time.

The rest of the paper is organized as follows. Section 2 covers
related work. Section 3 describes the structure of the GIP+, the sep-
arated buffer node approach, and the projection storage. Section 4
presents the algorithms in the GIP+, and Section 5 covers the ana-
lyzed insertion cost of the GIP+. Finally, Section 6 shows the exper-
imental results about the insertion and the search performance,
and Section 7 concludes.
2. Related work

An LBS system monitors the locations and states of moving ob-
jects. The system sends the information with a map to the client
system depending on user’s queries (Hu et al., 2005; Jung and
Ryu, 2006b). It is important to be equipped with a rapid search
function since the positions of the moving objects are frequently
changed over the flow of time. Accordingly, index techniques (Chen
et al., 2008) to deal with a great amount of information have been
actively studied (Mokbel et al., 2003). Most moving object indices
are based on the R-tree or the B+-tree. With MBR (Minimum Bound-
ing Rectangle), the R-tree based indices handle the line segment
splits, which represent the trajectory of moving objects, as illus-
trated in Fig. 1. These MBRs are included in a node, which is a basic
data unit in a tree. For example, the small MBRs, which have line
segments, are contained in the leaf nodes. The large MBR, which en-
closes the small MBRs, is also included in the non-leaf node. Exist-
ing indices are roughly divided into two types according to the field
of applications (Pfoser et al., 2000). One is the index for the history
and trajectory. The other is the index which deals with current and
future positions such as the QU-trade (Tzoumas et al., 2009) and the
movement prediction (Zhang et al., 2009).

The insertion approaches of the existing indices are roughly
classified into two approaches: top-down and bottom-up. The
top-down approach inserts and searches data by finding a fit child
Fig. 1. Moving object trajectory representation with the R-tree.
node from the root to the leaf node. The TB-tree (Pfoser et al., 2000)
finds the trajectory of a moving object rapidly by connecting the
leaf nodes included in the same trajectory. The STR-tree (Pfoser,
2002) considers the spatial attributes and the trajectory protection
of moving objects, but its performance is not as good as that of the
R-tree. The TPR-tree (Saltenis et al., 2000) deals with the current
and near future positions. The TPR reduces the frequency of up-
dates by employing a time parameterized bounding with the func-
tion of time. The MP-tree (Lee et al., 2004) focuses on improving
search performance in time slice query and temporal range query.
The MP-tree utilizes projection storage and avoids unnecessary ac-
cess by checking the boundaries of the projection storage. Its
search performance is better than that of the STR-tree (Pfoser,
2002) and the R-tree in time slice and temporal range query. How-
ever, projection storage requires more memory space and its inser-
tion performance is not as good as others.

The bottom-up approach quickly inserts and updates the data
by using a hash table to insert the data directly into the leaf node
such as the LUR-tree (Kwon et al., 2002), the bottom-up approach
(Lee et al., 2003), and the TB*-tree (Lee et al., 2004). This method
reduces the insertion cost of the top-down approach, because the
bottom-up approach does not find the appropriate child node from
the root. The LUR-tree uses the strategy to extend an MBR to re-
duce frequent updates, but its search performance is sometimes
not as good as that of the R-tree. Also, The LUR-tree needs pointers
to update the boundaries of parent nodes and the memory space
for the hash table. The LGU (Lazy Group Update) algorithm (Lin
et al., 2005) based on the TPR-tree has also been presented to re-
duce the update cost of current moving object data. A trajectory
splitting model (Rasetic et al., 2005) has also been introduced for
efficient spatiotemporal indexing through utilizing a cost model
with a linear heuristic algorithm that minimizes the number of
disk accesses. The single B+-tree (Jensen et al., 2004) is utilized
for partitioning moving object data according to their timestamp
by dealing with moving object locations as vectors. The Bx tree
structure based on the B+-tree is grafted into the existing database
system in a cost effective way. In insertion of the Bx tree, as the first
range expires, a new range is appended.

The traditional OBO method of the R-tree based indices needs
more insertion cost, when they inserts a large volume of data such
as historical moving object locations. The effective bulk loading ap-
proaches, which improve the loading efficiency, have been pro-
posed such as packing (Kamel and Faloutsos, 1993), STLT (Chen
et al., 2002). An insertion process in the STLT (Small Tree and Large
Tree) (Chen et al., 1998; Choubey et al., 1999; Chen et al., 2002) is
described by two steps: clustering spatial data (making a small-
tree) and inserting a small-tree into the large tree. The STLT has pro-
ven beneficial in cutting insertion index costs by inserting clustered
data instead of a singular data. However, the cost of clustering data
is high. In addition, this insertion method causes numerous over-
laps in the large tree, because the small-tree already occupies a
large area of clustering data. As a result, its search performance is
sometimes weaker than that of the R-tree. This approach is also uti-
lized to other indices for supporting the bulk loading such as GU-
tree (Jung and Ryu, 2005), the bulk loading of the PMR quad tree
(Hjaltason and Samet, 2002), BIOR (An et al., 2003). The GU-tree
(Jung and Ryu, 2005) uses the buffer node approach to reduce the
insertion cost, but it still has the overlaps by the buffer node. BIOR
(Bulk Insertion in Oracle R-trees) (Hjaltason and Samet, 2002) is de-
signed for minimizing overlaps with the restricted small-tree size.
The quad tree buffer with the analyzed I/O and CPU cost BIOR (An
et al., 2003) is used for rapidly construct PMR quad tree which han-
dle the arbitrary spatial objects. To improve the update efficiency of
TPR-tree with non-uniform datasets, a histogram-based bottom-up
algorithm (HBU) (Lin and Su, 2004) is designed. The G-tree (Wang
et al., 2005) shows good update performance by using the med-

1502 Y.J. Jung et al. / The Journal of Systems and Software 83 (2010) 1500–1511
ian-down approach to reduce the number of disk access. These in-
dex techniques are effective in processing spatiotemporal queries
(Jensen et al., 2004; Patel et al., 2004; Yufei and Papadias, 2001).
However, it is difficult to improve both insertion and search perfor-
mance in most of the indices.
3. Group Insertion tree with Projection Plus

In this paper, we focus on the design of the historical index
structure for combining the effective insertion and search meth-
ods. This index is used for handling the historical moving objects’
locations that is the trajectory of a vehicle such as the STR-tree
in dealing with temporal dimension in the category of spatiotem-
poral indexing methods (Mokbel et al., 2003). We did not consider
the multi-version indices for the discrete changing of data such as
the HR-tree, the MV3R-tree (Yufei and Papadias, 2001), and PIST
(Botea et al., 2008).

3.1. The structure of GIP+

The proposed GIP+ is the index for handling past locations of
moving points. Fig. 2 shows a set of nodes and how they are in-
dexed by the GIP+ with a fanout of 3. The GIP+ consists of the
non-leaf node with projection storage, the buffer node (non-leaf
node), and a leaf node as shown in Table 1. In this paper, the buffer
node like a small-tree of the STLT is a non-leaf node which is a par-
ent node of a leaf node. The depth of the buffer node is limited to 1
for reducing the overlaps in the GIP+, because a small-tree with
long depth causes numerous overlaps in the large tree with the
large area of the small-tree.

The GIP+ employs the non-leaf node with the projection storage,
which is designed to lower the count for checking the node’s
boundary during the data search (Lee et al., 2004). The storage is
used for improving search performance for a time slice query even
though making the storage requires extra insertion cost (Jung and
Ryu, 2006a). However, when an index using the storage processes
Fig. 2. Structure of the group ins
a range query, the index needs more node access: as many as the
number of the projection storages in the range. To avoid having to
provide this additional access, the GIP+ makes a link between the
buffer nodes, which directly connects to the next buffer node. If
all the nodes in the GIP+ have projection storages, it requires more
space and greater insertion cost. The cost changes depending on the
node level for utilizing the storage. Deciding the level for applying
the storage is also important for the trade-off between the insertion
and the search performance. If the buffer node uses the storage, the
insertion cost steeply increases with additional memory space for
the storage, because data is frequently inserted in the buffer node
and the storage. The suitable level for using the projection storage
in the GIP+ is the upper level of the buffer node in the test for finding
the most effective level for the projection storage. Besides, the buf-
fer node, the non-leaf node, is also used for improving the insertion
performance by making a group of the inserted data and putting the
group to an index (Jung and Ryu, 2006a).

Table 1 shows the form of a non-leaf node, a buffer node, and a
leaf node. In a node, rect is an MBR and ptr is a pointer to indicate a
child node, because the GIP+ is based on the R-tree. The non-leaf
node with the projection storage uses pid for pointing to a projec-
tion storage, which has seg for indicating the overlapped boundary
and ptr for storing the child nodes included in the line segment.
The buffer node which is a parent node of the leaf nodes has link
for pointing the next buffer node for rapidly searching data re-
cords. To avoid the overlaps, the GIP+ uses the separated buffer
node which is modified from the buffer node of the GIP for mini-
mizing the temporal boundary [t1, t2] of the buffer node.
3.2. The separated buffer node insertion approach

The top-down approaches require a data insertion cost which in-
creases in proportion to the data frequency and the height of a tree.
To reduce this insertion cost, the buffer node is processed according
to the data group insertion steps: (1) inserting data to the buffer
node and (2) inserting the buffer node to the GIP+ as shown in Fig. 3.
ertion tree with projection.

Table 1
The node types of the GIP+.

Node type (form) Entries

Non-leaf node
with projection
storage

Non-leaf
node (pid,
rect)

pid is to indicate the projection storages
rect is the MBR that encloses all the
MBRs of child nodes

Projection
storage (seg,
ptr)

seg is the line segment that encloses the
overlapped boundaries of the child
nodes
ptr is the pointer to the child nodes
which included in a line segment
boundary

Buffer node (non-leaf node) (ptr,
rec, link)

ptr is the pointer to the leaf nodes
rect is the MBR that encloses all the
MBRs of the child nodes
link is to indicate next inserted buffer
node

Leaf node (oid, rect) oid is the identification of the object
rect is the MBR of the object

Table 2
The separated buffer node.

Steps Types
Separated buffer node

Step 1 1. When an index receives new data, it inserts the data to the
buffer node

2. If the buffer node is full or the temporal boundary of the
received data record is beyond the defined temporal boundary
of the buffer node, the GIP+ makes new buffer node for storing
new data and go Step 2.

(Ex) (Assumption) the buffer node has boundary [t1, t2]
If an index receives a data record having boundary [t2, t3], it
stops inserting data to the buffer node [t1, t2] and makes
new buffer node [t2, t3] for storing new data [t2, t3]

Step 2 1. The separated buffer node [t1, t2] is inserted to the GIP+

2. The buffer node is stored into the one of the newest nodes in
the direction of the time axis in the large tree

3. GIP+ makes a link between the latest buffer node and new
inserted buffer node

Effect 1. The separated buffer node like the small-tree of STLT reduces
the insertion cost as much as the number of child nodes in
the buffer node

2. The buffer node also improve the search performance for time
point queries, but the insertion cost increases

M, the maximum number of entries in a node.

Y.J. Jung et al. / The Journal of Systems and Software 83 (2010) 1500–1511 1503
This buffer node method is based on the STLT (Chen et al., 1998;
Choubey et al., 1999). The STLT makes some small-trees with data
clustering and inserts the small-trees into a large tree. This STLT ap-
proach is useful for reducing the insertion cost by as much as the
number of leaf nodes included in the small-tree, but the small-tree
also makes some overlaps in the large tree, because the small-trees
already have large MBRs. To have a small MBR, the size of a buffer
node is defined as a non-leaf node which has a depth of one. To re-
duce the overlaps, the buffer node is also separated into small buffer
nodes which have the same temporal period in the GIP+. The bound-
ary of the buffer node is defined as small as possible. For example,
the temporal boundary of the buffer node is defined as 10 min, be-
cause the simulated data is generated per every 10 min. These pro-
cessing steps and the effects are described in Table 2.

Reducing an overlap is effective for improving the search per-
formance, because the MBRs of the R-tree based indices are mostly
allowed to overlap. Any range queries on the indices may result in
multiple complete or partial paths being followed from the root to
the leaf level. The more the overlap happens, the worse the branch-
ing behavior of a query becomes (Lee et al., 2003). Well organized
nodes in an index are useful for improving space utilization and
search performance.

To show the effect of the buffer node, Fig. 4 presents an example
of the insertion cost of the separated buffer node under the
assumption that K = 5, 20, M = 20 and the time period of the input-
Fig. 3. The separated buffer n
ted leaf nodes are same. The buffer node approach inserts only one
full buffer node to the large tree instead of M leaf nodes. The cost of
the first step is at most M, because the buffer node can store as
many as M leaf nodes. The cost of the second step is 1 � (the height
of the large tree � 1). The height of the tree is 1 less than the height
of the top-down tree, because the buffer node – a non-leaf node
which already has the leaf nodes – will be on the parent node level
of a leaf node in the GIP+. The additional examples for evaluating
the insertion cost of the separated buffer node are shown in Tables
4 and 5 in Section 5.

3.3. The projection storage

The storage is generally used for improving search performance
of a time slice query, but the storage also requires extra insertion
cost in order to make the projection storage (Lee et al., 2004). To
reduce the insertion cost, the projection storage is used for com-
bining only the temporal boundaries of the child nodes, because
the storage demands a greater insertion cost for gathering the
boundaries for all axes such as x, y, and time. In our experiment,
ode insertion approach.

Fig. 4. The insertion cost of the buffer node approach.

Table 3
The boundaries of the nodes in the MBR.

Terms Description

K The number of line segments to be inputted
N The number of records in an index
m The minimum number of entries in a node
M The maximum number of entries in a node
|log m N| � 1 The height of an index

Table 4
The insertion cost in the top-down approaches.

Insertion
method

Insertion cost

Top- down Total cost = the number of insertion
records � the height of the tree
= K � (|log m N| � 1)

Buffer node
with top-
down

Total cost = the cost in the buffer node + the
cost in the large tree
= K + {(K/M} � (|log m N| � 2)}

* the insertion cost
in the large tree

= the number of insertion buffer
nodes � the height of the large tree
= (K/M} � {(|log m N| � 1) � 1}

Insertion cost difference = Top-down cost � buffer node cost
= {K � (|log m N| � 1)} � {K + K/
M � (|log m N| � 2)}
= (K � K/M) � (|log m N| � 2)

Table 5
Example of the insertion cost.

Insertion manner Insertion cost

Simulated values K = 100,000, m = 10, M = 20, N = 1000,000
Height of
tree = |log m N| � 1 = |log 10 106| � 1 = |6| � 1 = 5

Top-down = K � (|log m N| � 1) = 100,000 � 5 = 500,000

Buffer node with top-
down

= K � {(K/M} � (|log m N| � 2)} = 120,000

Cost difference = (K � K/M) � (|log m N| � 2) = 380,000

1504 Y.J. Jung et al. / The Journal of Systems and Software 83 (2010) 1500–1511
it turns out that using the projection storages of all axes requires
almost three times as much memory space as utilizing only the
storage for time axis.

Fig. 5 shows the boundaries of child nodes and projection sto-
rages. The storage is a repository for the ranges and the pointers
to indicate the child nodes contained in the range. These ranges
are useful for avoiding needless node access which does not satisfy
the queries. The storage is also effective for dead space, because the
dead space is not included in the range of the storage. Especially, in
the search path of Q3, an index checks only projection storages, not
the boundaries of the child nodes. Minimization of dead spaces di-
rectly contributes to improving the ability to find appropriate data
during the data search process (Lee et al., 2003). The GIP+ reduces
the search cost by checking the range of storage, not all boundaries
of nodes. Good search performance has been demonstrated in the
experiment by reducing the number of node accesses.

Y.J. Jung et al. / The Journal of Systems and Software 83 (2010) 1500–1511 1505
To show the usage of projection storage, we describe the exam-
ples for searching data in the GIP+, the R-tree, and B-tree as shown
in Fig. 6. The example shows the search path and the count for
checking nodes boundaries with the different structures. In the
GIP+, there are two steps for checking the boundary in a node. First,
the GIP+ finds the temporal boundaries of the storages which inter-
sect the query range. Next, the spatiotemporal boundary of the
node is checked in the storage. The GIP+ does not check the all child
nodes in a node against most of the R-tree based indices by using
the projection storage. If we consider only the time axis, the GIP+ is
similar to the B-tree. The non-leaf node of the B-tree has the num-
ber of child nodes changed depending on the balance of the tree.
However, the GIP+ has a flexible number of the storages and their
ranges which are changed by the overlapped boundaries of the
child nodes. This point, deciding on the performance of the indices,
Fig. 5. The projection storage

Fig. 6. The search path and the count for time slice
is very interesting: if the child nodes are divided into several
groups such as the separated buffer node, the performance of time
point queries in the GIP+ is better, as shown in the test. The effect of
the storage is especially shown in Q2 (Query 2). The effect could be
improved by a greater degree. The GIP+ reduces the search cost by
checking the storage ranges. However if a node only has storage,
the performance of the B-tree is better than the GIP+.

In wide range temporal queries, checking the storage requires a
greater search cost, because two steps are required for each node.
Originally, the search method using the storage checks all the
boundaries of the nodes and the storage ranges which are included
in the range of the query. However, the storage in the GIP+ requires
a few counts for checking the boundaries in the test, because the
storage is applied in only the upper nodes of the buffer node. Fur-
thermore, the link between the buffer nodes is also used for reduc-
for time axis in the MBR.

queries in the GIP+, the R-tree, and the B-tree.

1506 Y.J. Jung et al. / The Journal of Systems a
ing the number of node accesses. When the GIP+ processes the
range queries, first, it finds a buffer node for satisfying the low
boundary of the range query. Next, it finds another buffer node in-
cluded in the query by following the link until the boundary of the
linked buffer node intersects the upper boundary of the range
query. Thus, the GIP+ improves the cost of search performance
for range queries in the GIP+.
4. The Algorithms in the GIP+

To explain the insertion and the search processing steps in the
GIP+, Algorithms 1–3 show the separated buffer node insertion ap-
proach and the search with the projection.

Algorithm 1. The data insertion into the separated buffer
node.

Algorithm Insert_data_to_separated_buffer_node(class
node *root, class node *entry)

input: root // node of a tree
entry // information of moving objects

method:
// The buffer node is a non-leaf node which has 1 depth such
as small-tree in STLT
if buffer node is full or entry ‘s time is beyond the
old_entry’s time then

insert_buffer_node_to_GIP_plus (root, the buffer node)
// insert the buffer node into GIP+

make new buffer node
endif
insert the entry into the buffer node
old_entry entry // old_entry is global variable

end

Algorithm 2. The buffer node insertion into the GIP+.

Algorithm Insert_buffer_node_to_GIP_plus (class node
*root, class buffernode *buffer_entry)

input: root // node of a tree
buffer_entry // the buffer node, non-leaf node which will be
inserted in GIP+ (the large tree)

method:
if root is full then

// Put the new buffer_entry into new node and keep the
old one as it is

make new root for inserting buffer_entry and adjust tree
endif
find the latest T projection in root
if buffer_entry’s boundary does not intersect the T
projection’s boundary then

make new T projection storage
endif
insert buffer_entry into the T projection
find the closest node in the T projection
if buffer_entry’s level is the child node level of the closest
node then

insert buffer_entry into the closest node
make a link between latest buffer node and new inserted

buffer_entry // for range queries
else

insert_node(the closest node, buffer_entry)
endif

end
Algorithms 1 and 2 show the separated buffer node insertion meth-
od. When a non-leaf node in the GIP+ becomes full during the inser-

tion process, the GIP+ simply creates a new node. The GIP+ does not
split the node, and instead inserts data into the new one at non-leaf
node level like TB-tree (Pfoser et al., 2000). Since a new node is cre-
ated at the non-leaf node level, creating new node also serves to re-
duce the maintenance cost for the balance of the tree. Additionally,
it is important to decide the proper size of the buffer node. The
insertion cost increases in proportion to the size of a buffer node,
but its search cost also increases as much as the size of a buffer
node, because the buffer node creates overlaps in an index such
as the large clustering small-trees in STLT (Choubey et al., 1999).
The size of a buffer node is basically equal to that of the non-leaf
node. If GIP+ uses a small buffer node such as the separated buffer
node, its search performance increases with the projection storage,
but its insertion performance decreases as much as the empty space
of the buffer nodes.

Algorithm 3. The data search for a range query

Algorithm search_node(class node *root, class range
*query)

input: root // non of tree
query // query range

output: result set // set of leaf nodes
method:

find the closest T projection and its intersected child node
for satisfying the low boundary of the query
if query’ low boundary intersect the node’s boundary in T
projection then

if the node is the buffer node then
add the satisfied leaf node of the buffer node to the

result set // result set
follow the link to next buffer node and put its leaf

nodes to the result set
until the leaf node boundary intersects the upper

boundary of the query
return result set

else
search_node(the intersected node, query)

endif
endif
return null

end

The GIP+ searches data for satisfying queries according to the search
path with the projection storage as shown in Fig. 6. When a range
query is processed, the GIP+ processes a time slice query for finding
the earliest node of the query range. Then, the next data records is
searched by following the link between the buffer nodes for avoid-
ing the unnecessary node access which checks the ranges of other
storages as shown in Fig. 10.

5. The insertion cost analysis in the GIP+

In this section, to concentrate on the insertion cost, we did not
consider the AdjustTree algorithm and the cost depending on the
change in depth of the trees. Table 3 lists the terms used to analyze
the insertion cost: K means the number of leaf nodes, N records are
already inserted in the indices.

To simply calculate the effect of the buffer node approach, we
assume that every separated buffer node has same time period
during data insertion. Table 4 shows the insertion cost of the
top-down and the separated buffer node approaches. The buffer
node method has the insertion costs in two aspects: the cost in

nd Software 83 (2010) 1500–1511

Table 6
Workload parameters.

Query Parameter Data range

Data insertion The number of records
(the number of objects)

100,000 (100) 250,000 (100) 500,000 (100) 750,000 (100) 1000,000 (100)

The number of records
(the number of objects)

500,000 (50) 1000,000 (100) 1500,000 (150) 2000,000 (200) 2500,000 (250)

Time Slice query Spatial range (%) 1, 3, 5, 7, 10, 25, 50, 75, 100
Time point (%) 10, 25, 50, 75, 90

Spatiotemporal range query Spatial range (%) 1, 3, 5, 7, 10, 25, 50, 75, 100
Temporal range (%) 1, 5, 10, 15, 20, 50, 100

Y.J. Jung et al. / The Journal of Systems and Software 83 (2010) 1500–1511 1507
the buffer node and the cost in the large tree. In the GIP+, the K/M
buffer nodes are inserted into the large tree, because each buffer
node has M leaf nodes.

As shown in the cost difference in Table 4, if (K � K/M) > 0 and
|log m N| � 2 > 0, we prove the advantage of the proposed buffer
node insertion method. First, (K � K/M) > 0 is satisfied, because K
and M are greater than 0. Moreover, if N P m3 () |log m m3| = 3)
is satisfied, |log m N| > 2 is also satisfied. Therefore, the buffer node
method is effective when the height of a tree is greater than 2. An
example with sample figures is shown in Table 5.

The effect of the buffer node is reassured by the difference be-
tween two indices with the simulated values in Table 5. The more
K and M increase, the better the effect of the buffer node method gets.
However, in the GIP+, the buffer node is separated according to the
time period of leaf nodes which is included in the buffer node. So,
the insertion cost increases as much as the empty space of the buffer
node, because the number of separated buffer nodes increases.
6. Performance evaluation

In the test, we determine the number of checking trials of the
node’s boundaries during the data insertion and the search in the
indices such as the GIP+, the GIP, the MP-tree, the GU-tree, the
STR-tree and the R-tree with both top-down and bottom-up ap-
proaches. All indices treat time as an extra spatial dimension like
Fig. 1. The number of node access is used for performance evalua-
tion as shown in Fig. 6, because the time for processing queries can
be changed depending on the hardware conditions such as CPU,
RAM, and disk performance.

6.1. Experimental setup

All data records in these indices are stored in the main memory,
not on a disk. A data generator is used to generate the simulated
Fig. 7. The insertion cost a
random positions of 100 objects every ten minutes like GSTD
(Theodoridis and Nascimento, 2000). Each position is a two-dimen-
sional data point within a square [in this case, 40,000 � 40,000
data points] that is movable within a radius of 30 points for each
sampling interval. This moving object data that is the historical tra-
jectory of a vehicle is different with the boundary of county such as
TIGER (TIGER). The generated historical data, trajectory of a vehi-
cle, is flexibly changed depending on the movement of a vehicle.
The data generator is used for this experiment, because it is hard
to get real data such as 1000,000 line segments of trajectories.
The workload parameters used are summarized in Table 6. In this
paper, we evaluated the cost of data insertion, a time slice query,
and a range query.

In Table 6, the percent figures describe the ratio of the time
point or the range size of the queries to the entire spatial or tem-
poral range. For example, if a query has a 50% spatial range, the
range is one half of the entire spatial range, for example
20,000 � 40,000. The insertion and the search performance are
changed depending on the part of entire area even though queries
have the same range (%), because the number of moving objects of
the partial area is different. In our test, the average of the number
of node accesses after searching all of the divided parts of the en-
tire area with the defined range of a query is presented. These
experimental parameters are derived from the test in (Pfoser
et al., 2000) such as the temporal range (20%).
6.2. The insertion cost analysis

The insertion cost grows depending on the number of inserted
data as shown in Fig. 7. The MP-tree (top-down) shows the worst
insertion performance, because its insertion process needs more
node access for making the projection storages for all axes. The
advantage of the buffer node approaches is proved in the GU-T,
the GU-B, and the GIP+ performance. The GU-T is judged to be a
nalysis of the indices.

1508 Y.J. Jung et al. / The Journal of Systems and Software 83 (2010) 1500–1511
little better than the GU-B, because the GU-B has to check the hash
table for the data insertion. This is the difference between the GU-T
and the GU-B.

The GIP and the GIP+ are less effective than the GU-tree, because
they require the additional insertion cost and space for the projec-
tion storage in the non-leaf node. To determine the effect of the
separated buffer node, we devise two types of GIP+; the GIP+ L
which uses the link between buffer nodes, and the GIP+ SL which
utilizes the separated buffer node and the link between buffer
nodes. It was found that the insertion performance of the GIP+ L
is better than that of the GIP+ SL because the separated buffer node
did not use its full space and consequently, reduces its effect.
Fig. 8. The search cost for the time slice query dependi
However, the GIP+ SL shows good search performance for time slice
query in Figs. 8 and 10, because the separated buffer node reduces
overlaps between nodes. As a result of the test, the insertion cost is
GU-T ; GU-B <; GIP ; GIP+ L < GIP+ SL < R-B < STR <; R-T < MP.

6.3. The search cost analysis

The search performance of the GIP+ is also analyzed according
to the items in Table 6, because most indices have a trade-off be-
tween the insertion and the search performance. For example,
the LUR-tree has good update performance, but sometimes its
search performance is not as good as that of the R-tree.
ng on the spatial range (%) and the time point (%).

Y.J. Jung et al. / The Journal of Systems and Software 83 (2010) 1500–1511 1509
The performances of the STR, the R-T, and the R-B are frequently
changed depending on the time point (%) and spatial range (%) in
Fig. 8, because random spatial distribution could affect them. The
performance of the GIP+, the GIP and the MP-tree is better than
others by using the projection storage. The GIP+ SL is better than
the GIP and GIP+ L, because the separated buffer node reduces
the overlap between the buffer nodes in a tree. The spatial range
(%) could weakly affect the performance for the time slice queries
in the GIP+, but it strongly influences the performance in the spa-
tiotemporal range queries. The search cost for the time slice query
is GIP+ SL <; GIP+ L ; GIP <;MP < GU-T ; GU-B < R-T ; R-
B <; STR.

The GIP and the GIP+ show good performance in the results for
queries (a) in Fig. 9, because the projection storage is useful for
Fig. 9. The search cost for the range query de
searching data in time slice query even though temporal range is
100%. In particular, when the temporal range is 1%, the perfor-
mance shows that the projection storage is effective. The projec-
tion storage in the GIP and MP-tree is not effective for the range
queries with widen spatial range, because the storage has the only
summarized temporal range of a child nodes for quickly processing
a time slice query. However, in the result of Fig. 9, the storage does
not require not much additional cost, because of the link between
the buffer nodes. The GIP+ SL and the GIP+ L are better than the GIP,
because they quickly search the next data by following the link be-
tween buffer nodes after the time slice query. The GIP needs to
check the projection storages which are included in the query
range, because the GIP has no link between the buffer nodes. In
range queries (b) with changed spatial range (%), the results of
pending on the spatiotemporal range (%).

Fig. 10. The insertion and the search cost of the GIP and the GIP+.

1510 Y.J. Jung et al. / The Journal of Systems and Software 83 (2010) 1500–1511
the GIP, the GIP+ SL, and the GIP+ L are rapidly changed. The result
means that the spatial ranges mostly influence the performance of
the GIP and the GIP+. However, the performance of GIP, the GIP+ SL,
and the GIP+ L is not worse than the one of MP-tree and GU-T even
though 100% spatial range. The search cost for the spatiotemporal
range query is GIP+ L <; GIP+ SL <; GIP <;MP < GU-T ; GU-
B <; R-T <; R-B <; STR.

To evaluate the differences among the GIP indices such as the
GIP, the GIP+ L, and the GIP+ SL, Fig. 10 shows the results for inser-
tion and search costs with other simulated data records (500,000–
2500,000) which depend on the changed number of objects such as
50, 100, 150, 200, and 250. In the insertion cost (a), the GIP+ L and
the GIP present the insertion cost lower than the GIP+ SL. The sep-
arated buffer node of the GIP+ SL needs additional insertion cost for
storing the increased buffer nodes because its buffer nodes are sep-
arated. The order of insertion cost is GIP+ L ; GIP <; GIP+ SL. In a
time slice queries (b) at time point 50% with spatial range 1%
and 3%, the GIP+ SL shows less cost than others, because the less
overlaps reduce the node accesses. The order of the search cost
of this slice query is GIP+ SL < GIP+ L ; GIP. In the range queries
(c) with temporal range 100% and spatial range 1%, 3%, and 5%,
the order of the search cost of the range query is GIP+ L <; GIP+

SL < GIP. The GIP+ L and the GIP+ SL have less cost than the GIP, be-
cause following the link reduces the number of node access. The
GIP+ L shows good performance, because the GIP+ L has nodes less
than the GIP+ SL. The performance of the GIP+ SL is closed to one of
the GIP+ L, because the GIP+ SL has good performance for the time
slice query of the search algorithm. If the query keeps a narrow
spatial range, the GIP+ SL also shows good performance in a range
query.

In the test about the size of the trees, the total size of non-leaf
nodes is GU-T ; GU-B <; GIP <; GIP+ L <; R-B < R-T < GIP+

SL < MP < STR. The GIP+ SL has more nodes which are made by
the separated buffer node method. This separated buffer node
makes the search cost high as much as the increased number of
nodes. However, the GIP+ SL is useful for processing the time point
and the range queries with narrow spatial range such as 1%, 3%,
and 5% even though its big size and its high insertion cost. When
a temporal range query is processed, the GIP+ L is useful for insert-
ing and searching historical data which is continuously arranged
on a time axis.
7. Conclusions

Numerous moving object data, the continuously created data
with time flow, causes the high cost for the insertion and the
search in moving object indices. In order to cost effectively reduce
both, we propose the GIP+, designed for effectively combining the
advantages of the buffer node method and the projection storage.
In the test, the GIP+ L is effective for reducing the insertion and
the search cost for processing a range query. The GIP+ SL which
uses the separated buffer node shows good performance in a time
slice query and a range query with narrow spatial range.

In future studies, the GIP+ structure will be applied and evalu-
ated on various LBS applications, including the complement for
processing spatial range queries and other queries such as aggrega-
tion queries. To improve the insertion and search performance, We
will study the adjustable temporal boundary of the separated buf-
fer node. In order to detect the environmental conditions for the
LBS, the GIP+ will be extended for the processing of great amounts
of geosensor data.
Acknowledgements

This research was supported by the Korea Research Foundation
Grant funded by the Korean Government (MOEHRD). No. KRF-
2007-357-D00206, Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Minis-
try of Education, Science and Technology (NRF No. 2010-0001732)

Y.J. Jung et al. / The Journal of Systems and Software 83 (2010) 1500–1511 1511
and (NRF No. 2009-0052728), and by the grant of the MEST (The
Regional Core Research Program/Chungbuk BIT Research-Oriented
University Consortium).

References

An, N., Kanth, R., Kothuri, V., Ravada, S., 2003. Improving performance with bulk-
inserts in Oracle R-trees. In: 29th VLDB, pp. 948–951.

Botea, V., Mallett, D., Nascimento, M.A., Sander, J., 2008. PIST: an efficient and
practical indexing technique for historical spatio-temporal point data.
Geoinformatica 12 (2), 143–168.

Chen, L., Choubey, R., Rundensteiner, E.A., 1998. Bulk insertions into R-trees using
the small-tree-large-tree approach. In: ACM GIS Workshop, pp. 161–162.

Chen, L., Choubey, R., Rundensteiner, E.A., 2002. Merging R-trees: efficient strategies
for local bulk insertion. GeoInformatica 6 (1), 7–34.

Chen, S., Jensen, C.S., Lin., D., 2008. A benchmark for evaluating moving objects
indexes. In: VLDB, pp. 1574–1585.

Choubey, R., Chen, L., Rundensteiner, E.A., 1999. GBI: a generalized R-tree bulk-
insertion strategy. In: Symposium on Large Spatial Databases, pp. 91–108.

Forlizzi, L., Guting, R.H., Nardelli, E., Schneider, M., 2000. A data model and data
structures for moving objects databases. In: ACM SIGMOD, pp. 319–330.

Guttman, A., 1984. R-trees: a dynamic index structure for spatial searching. In:
ACM-SIGMOD, pp. 47–57.

Hjaltason, G.R., Samet, H., 2002. Speeding up construction of PMR quadtree-based
spatial indexes. VLDB Journal 11 (2), 109–137.

Hu, H., Xu, J., Lee, D.L., 2005. A generic framework for monitoring continuous spatial
queries over moving objects. In: ACM SIGMOD, pp. 479–490.

Jensen, C.S., Lin, D., Ooi, B.C., 2004. Query and update efficient B+-tree based
indexing of moving objects. In: VLDB, pp. 768–779.

Jung, Y.J., Ryu, K.H., 2005. A group based insert manner for storing enormous data
rapidly in intelligent transportation system. In: ICIC, pp. 296–305.

Jung, Y.J., Ryu, K.H., 2006a. Group insert tree with projection for handling vehicle
information effectively in LBS. In: XWICT, pp. 105–112.

Jung, Y.J., Ryu, K.H., 2006b. The vehicle tracking system for analyzing transportation
vehicle information. In: APWeb Workshops (ICSE), pp. 1012–1020.

Kamel, I., Faloutsos, C., 1993. On packing R-trees. In: CIKM, pp. 490–499.
Kwon, D.S., Lee, S.J., Lee, S.H., 2002. Indexing the current positions of moving objects

using the lazy update R-tree. In: MDM, pp. 113–120.
Lee, E.J., Ryu, K.H., Nam, K.W., 2004. Indexing for efficient managing current and

past trajectory of moving object. In: Apweb, pp. 781–787.
Lee, E.J., Jung, Y.J., Ryu, K.H., 2004. A moving point indexing using projection

operation for location based services. In: 9th DASFAA, pp. 775–786.
Lee, M.L., Hsu, W., Jensen, C.S., Cui, B., Teo, K.L., 2003. Supporting frequent updates

in R-trees: a bottom-up approach. In: VLDB, pp. 608–619.
Lin, B., Su, J., 2004. On bulk loading TPR-tree. In: MDM 04, pp. 114–124.
Lin, B., Su, J., 2005. Handling frequent updates of moving objects. In: CIKM, pp. 493–

500.
Mokbel, M.F., Ghanem, T.M., Aref, W.G., 2003. Spatio-temporal access methods. IEEE

Data Engineering Bulletin 26 (2), 40–49.
Patel, J.M., Chen, Y., Chakka, V.P., 2004. STRIPES: an efficient index for predicted

trajectories. In: ACM SIGMOD, pp. 637–646.
Pelanis, M., Saltenis, S., Jensen, C.S., 2006. Indexing the past, present and anticipated

future positions of moving objects. ACM Transactions on Database Systems 31
(1), 255–298.

Pfoser, D., Jensen, C.S., Theodoridis, Y., 2000. Novel approaches in query processing
for moving object trajectories. In: VLDB, pp. 395–406.
Pfoser, D., 2002. Indexing the trajectories of moving objects. Data Engineering
Bulletin 25 (2), 4–10.

Rasetic, S., Sander, J., Elding, J., Nascimento, M.A., 2005. A trajectory splitting model
for efficient spatio-temporal indexing. In; VLDB, pp. 934–945.

Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M., 2000. Indexing the positions of
continuously moving objects. In: ACM-SIGMOD, pp. 331–342.

Theodoridis, Y., Nascimento, M.A., 2000. Generating spatiotemporal datasets.
SIGMOD Record 29 (3), 39–43.

TIGER <http://www.census.gov/>.
Tzoumas, K., Yiu, M.L., Jensen, C.S., 2009. Workload-aware indexing of continuously

moving objects. VLDB 2 (1–2), 1186–1197.
Wang, X., Zhang, Q., Sun, Weiwei, 2005. GTree: an efficient grid-based index for

moving objects. Database Systems for Advanced Applications, 914–919.
Wolfson, O., Xu, B., Chamberlain, S., Jiang, L., 1998. Moving objects databases: issues

and solutions. In: SSDBM, pp. 111–122 .
Yufei, T., Papadias, D., 2001. The MV3R-tree: a spatio-temporal access method for

timestamp and interval queries. The VLDB Journal, 431–440.
Zhang, M., Chen, S., Jensen, C.S., Ooi, B.C., Zhang, Z., 2009. Effectively indexing

uncertain moving objects for predictive queries. VLDB 2 (1–2), 1198–1209.

Youngjin Jung is a senior researcher at Supercomputing Center, Dept. of Cyber
Environment Development, Korea Institute of Science and Technology Information
since February 2010. He got his Ph.D. degree in computer science from the
Chungbuk National University, South Korea, in 2007. He worked as a research
scholar at the department of Spatial Information Science & Engineering, University
of Maine from October 2007 to January 2010. His research interests include spa-
tiotemporal database application, moving object index, sensor data processing, and
environmental monitoring application.

Keun Ho Ryu received the Ph.D. degree from Yonsei University, Korea, in 1988.
He is a professor at Chungbuk National University in Korea and a leader of
database and bioinformatics laboratory. He served Korean Army as ROTC. He
worked not only at University of Arizona as Post-doc and research scientist but
also at Electronics and Telecommunications Research Institute, Korea. He has
served on numerous program committees including a demonstration co-chair of
the VLDB, a co-chair of the ADMA conference, the PC committee member of
APWeb, the AINA, and so on. His research interests are included in temporal
databases, spatiotemporal database, temporal GIS, ubiquitous computing and
stream data processing, knowledgebase information retrieval, database security,
data mining, and bioinformatics. He is a member of the IEEE as well as a member
of the ACM since 1983.

Moon Sun Shin is an assistant professor at the Anyang University, South Korea. She
got her Ph.D. degree in computer science from the Chungbuk National University,
South Korea, in 2004. She worked as a lecturer professor at the department of
computer science of Konkuk University from 2005 to 2008. Her research interests
include spatiotemporal database, database security, data mining.

Dr. Silvia Nittel is an Associate Professor in the Department of Spatial Information
Science and Engineering at the University of Maine. She received her Ph.D. in dat-
abases from the University of Zurich in 1994. Her current research focuses on
database management techniques for sensor networks, especially sensor networks
deployed in environmental and geographic applications. She is a co-founder the
conference series on ‘‘Geosensor Networks”.

http://www.census.gov/

	Historical index structure for reducing insertion and search cost in LBS
	Introduction
	Related work
	Group Insertion tree with Projection Plus
	The structure of GIP+
	The separated buffer node insertion approach
	The projection storage

	The Algorithms in the GIP+
	The insertion cost analysis in the GIP+
	Performance evaluation
	Experimental setup
	The insertion cost analysis
	The search cost analysis

	Conclusions
	Acknowledgements
	References

