
Dynamic Adaptive File Management in a Local Area Network

Jiong Yang, Wei Wang Richard Muntz, Silvia Nittel
T.J. Watson Research Center Department of Computer Science

IBM Research Division University of California, Los Angeles
fjiyang, ww1g@us.ibm.com fmuntz, silviag@cs.ucla.edu

Abstract

In light of advances in processor and networking technology, espe-
cially the emergenceof network attached disks, the traditional client-
server architecture of file systems has become suboptimal for many
computation/data intensive applications. In this paper, we intro-
duce a revised architecture for file management employing network
attached storage: the dynamic file server environment (Dynamo).
Dynamo introduces two main architectural innovations: (1) To pro-
vide high scalability, the file management functions are mainly per-
formed cooperatively by the clients in the system. Furthermore, data
is transferred directly to the client’s cache from network-attached
disks, thus avoiding copies from a disk to the server buffer and then
over the network to the client. (2) Dynamo uses a cooperative cache
management which employs a decentralized lottery-based page re-
placement strategy. We show via performance benchmarks run on
the Dynamo system and simulation results how this architecture in-
creases the system’s adaptability, scalability and cost performance.

1 Overview of Dynamo

The Dynamo architecture consists of four layers: the disk I/O
layer, the cooperative cache manager layer, the file manager
layer, and the coordinator layer. These four layers interact
with each other as shown in Figure 1.

Disk I/O Layer

The lowest layer of Dynamo is the I/O layer that provides data
I/O from and to storage devices. We assume that the storage
devices are disks or disk arrays. The I/O layer resides on the
disk controllers of the network attached storage devices and
maps files and data pages to storage locations on a storage
device in a similar fashion to the I/O layer in a conventional
file system.

Cooperative Cache Manager Layer

In a LAN, the working set size of local applications will
vary over time resulting in time when the working set of an
individual node exceeds the node’s local physical memory;

however, the aggregate size (i.e., of the union) of all working
sets is often less than the aggregate nodes’ combined main
memory. Therefore, it is beneficial if local working sets can
“spill over” to other node whose main memory is not fully
utilized. To achieve this, Dynamo treats main memory from
all nodes as a pool of global memory with a cooperative cache
manager layer on each node. Each node treats its own memory
as the local cache and memory on other nodes as a remote
cache, intermediate between its local cache and secondary
storage. The cooperative cache managers are responsible for
managing the remote caches as well as their own local caches.

The cooperative cache manager (CCM) consists of two
components: the local cache manager (LCM) and the dis-
tributed cache manager (DCM) which collaborates with other
DCMs. The LCM performs cache replacement of its local
cache while a DCM defines, in concert with other cache man-
agers, a decentralized scheme for global cache management.
Using a lottery-based scheme, the DCM determines how and
whereto local pages should be evicted. CCM also maps be-
tween the logical address of a file, and its memory address.

File Manager Layer

In Dynamo, large parts of server functions are distributed to
nodes in the LAN and are handled by them in a cooperative
fashion. We distinguish two software components in Dynamo
which provide the functionality of a traditional file system:
the coordinator and the file managers. The coordinator is a
small remaining part which runs on one or more well-know
core nodes, while the file managers execute on any nodes and
perform most of the traditional data management functions.
We refer to the manager of a file as the owner of that file.

Coordinator Layer

The coordinator manages centralized information for all
nodes, and coordinates which data partition is managed by
which nodes, keeps track of which data is managed by which
file manager, informs nodes about owners, and participates
in ownership transfers between nodes as well as transaction
management. Because of its central role, a coordinator (or a



set of cooperating coordinators) run on a backbone of reliable,
well-known nodes.

In the following sections, we describe the contributionsand
specifics of Dynamo such as the dynamic data management
strategy and the decentralized cache management strategy for
its cooperative cache in detail.

Ownership
of

Global Ownership Table Maintenance
Coordinator

Core Machine

Page-Block Mapping
I/O Manager

Disk Block Allocation Strategies

Change

Disk Controller

Page

Applications

File-Pages Mapping

Cache Table Lookup

Local Ownership Table Maintenance

File Manager

Distributed Cache Manager
Cache Table for Onwed Files

Cooperative Cache Manager

Local Cache Manager
Local Cache Maintenance

Applications

Distributed Cache Manager
Cache Table for Onwed Files

Cooperative Cache Manager

Local Cache Manager
Local Cache Maintenance

File-Pages Mapping

Cache Table Lookup

Local Ownership Table Maintenance

File Manager

Machine Machine

Figure 1: Dynamo Architecture

2 Data Organization

To support the dynamic data management and cooperative
caching, Dynamo employs a data organization scheme that
supports the flexible assignment of file management to nodes.
In a UNIX file system, directories, subdirectories, and files
form a natural hierarchy structure. DynamO also utilizes this
hierarchy. The parent-child relationship in the hierarchy rep-
resents the directory-subdirectory relationship within the file
system. To keep track of this parent-child relationship, we
use a prefix-based naming structure. Each level in the data
management hierarchy scheme is represented by one byte in
the identifier; the maximum fanout of a node is 255. The
length of the identifier can be chosen by the system admin-
istrator, and depends on the overall data size of the system.
Typically, the identifier size is 8 bytes, and it can address 1013

GB of data. For example, an entity of level 4 in the hierarchy
has the identifier “11230000”; its children can be identified
by keeping the same “1123” prefix in their identifier, i.e. an
entity with the identifier “11232100” is a descendent of it.

3 Cooperative Caching

In this section, we describe the details of cooperative cache
management in Dynamo.

3.1 Page Retrieval

Page retrieval from either external storage or remote caches
is the most basic functionality of any cooperative caching
scheme. In Dynamo, page retrieval includes some of the
following procedures as illustrated in Figure 2.

1. Cache discovery. This procedure is used to discover the
node on which a cached copy of the desired data exists
if there exists one.

2. Local page retrieval. If the cached copy of data is stored
in the local cache, then this procedure will be invoked to
load the page into the application user space.

3. Remote page retrieval. This procedure is designed to
fetch a cached copy of the data from a remote node to
the local cache if the data is not cached locally.

4. Disk page retrieval. If there is no cached copy anywhere
in Dynamo, then this procedure has to be invoked to fetch
the page from disk(s).

5. Page replacement. If there is no space on a node to load
the data, then some existing page(s) have to be replaced.

Each of these five procedures is described next in some
detail.

3.1.1 Cache Discovery

Figure 4 describes the operations involved in cache discovery.
Assume that an application on node A tries to access data
owned by the file manager on node B. The application first
contacts the local file manager with the ID of the desired file
and the offset, length of the data in the file (Step 1). The file
manager1 first performs file to page mapping and identifies
the desired page(s). Then the file manager checks whether it
already knows the owner of the data (Step 2). If not, it then
contacts the coordinator for this information (Step 3).

As the name implies, the coordinator has a delegating, co-
ordinating, and book keeping role in Dynamo. It manages the
information that has to be kept centrally for all nodes; how-
ever, access to this information is kept minimal to avoid the
analog of the server bottleneck2. As we will discuss later, the
coordinator has several responsibilities: (1) keep track of all
network-attached storage (NAS) space in the LAN, (2) keep
track of which file manager manages which data.

The coordinator responds to an initial data request by the
local file manager on a node by looking up its global owner-
ship table (as illustrated in Figure 3(b)) to identify the owner
(Step 4), and returns the ID of the owner and the highest level

1We will explain the functionality of the file manager in detail in next
section.

2According to the size, the system can employ a single, central coordinator
or a distributed coordinator. In the case of a distributed coordinator scheme,
the set of nodes running a coordinator is known to all nodes in the LAN.



manager know where
Does the file

Is the page
cached locally?

cached by some
remote node?

Is the page
memory have space to

hold the new page?

Does the local

the page is cached?

No

Start

Cache Discovery Local Page Retrieval

Yes No No

Yes
No Yes

Disk Page Retrieval

Remote Page Retrieval Cache Replacement

Yes
End

Figure 2: State Diagram of Page Retrieval

homogenous entity3 which contains the data page to the file
manager on A (Step 5)4. Note that if the owner of some data
has become known to the local file manager previously, the
above process is omitted. Ptherwise, the file manager on A
directly sends a message to its peer who owns the data (i.e.,
the file manager on B) to request the proper lock5 and ask for
the ID of the node where the desired data is cached (Step 6).

.

.

00112233

00331127

pageID status

replicate

single

.

.

131.179.99.79

131.179.99.79
131.179.99.69

nodeID

.

.

(a) Data Page Cache Table (b) Global Ownership Table

13400000

12000000

20000000

131.179.99.69

131.179.99.79

0

node IDentity

.
.
.

.
.
.

Figure 3: Two Tables

7
File Manager

Distributed Cache Manager

Local Cache Manager

Distributed Cache Manager

Local Cache Manager

8

6

Coordinator
4

(owner)

3

5

File Manager
2

Application 1

Node A (retriever) Node B

Figure 4: Cache Discovery

The owner of the page(s) uses its data page cache table
to determine where the desired pages are located (Step 7).
A “data page cache table” is maintained by each DCM. On
each node, the data page cache table records which node has
a cached copy of a locally owned data page. As shown in
Figure 3(a), each entry in the data page cache table consists of
three fields: pageID, status, and cached node ID (represented
by the IP address of the node). The status of a page could be
one of the follows. (1) single: Only a single copy of the page

3A highest level homogeneousentity is the entity whose owner is different
from at least one of its siblings.

4A becomes the owner/manager of this entity and all its descendants.
5In Dynamo, we assume the page-oriented locks unless otherwise

specified.

resides in the memory of some node. (2) replicated: The page
is cached by multiple nodes. The cached node ID field is a
linked list of the IDs of the nodes which cache a copy of the
page identified by pageID.

If the desired page is cached, then the owner will return
the ID of the node which holds the cached page (Step 8).
Otherwise, the ID of the disk which stores the page will be
returned with the page ID.

3.1.2 Local and Remote Cache Page Retrieval

If the page resides in the local memory, then the file manager
requests the local cache manager (LCM) via the DCM to
locate and load the page into the application user space. This
is shown in Figure 5.

the page ID to the LCM
via the DCM.

2. The LCM locates the cache
in the memory.

1. The file manager forwardsNode A

Distributed Cache Manager

File Manager

Local Cache Manager

2

1

1

(retriever)

Figure 5: Retrieve a Page Locally

6

2

Node A

Distributed Cache Manager

File Manager

Local Cache Manager

3 5

4

(holder)
Node C

Distributed Cache Manager

File Manager

Local Cache Manager

7

1
(retriever)

Figure 6: Retrieve a Page from a Remote Node

If the page resides on other node, the remote cache retrieval
procedure has to be invoked. The DCM plays an important
role in retrieving a remote cached page. The entire procedure
is illustrated in Figure 6. After determining the location of the



cache holding the desired page, the file manager forwards the
page ID and the node ID of the cache holder to its DCM (Step
1). The DCM sends a request with the page ID to its peer on
the cache holder (say node C) (Step 2). After obtaining the
page ID, the DCM on node C contacts its LCM to locate the
page in its memory (Step 3 — 5), and then sends back the
page to its peer on node A (Step 6). Finally, the DCM on A
stores the page in local memory via its LCM (Step 7).

3.1.3 Disk Page Retrieval

As illustrated in Figure 7, if the page is not cached, the file
manager forwards the page ID and disk ID to the LCM via
the DCM (Step 1). The LCM then sends a request to the I/O
manager on the disk controller (Step 2). The I/O manager, in
turn, locates the page on its disk (Step 3) and returns it to the
LCM of the retriever (Step 4).

Node A

Distributed Cache Manager

File Manager

Local Cache Manager

1

1
Disk Controller

I/O Manager
2

4 3

(retriever)

Figure 7: Retrieve a Page from Disk

Every time a page is fetched from a disk or a remote node,
the LCM stores the page in its memory. However, if the local
memory is full, some page has to be replaced.

3.2 Page Replacement

If a page in memory has to be replaced, this page can either be
evicted to another node or simply be discarded. This process
is illustrated in Figure 8.

When the DCM on B receives a request on pages status,
it will check the data page cache table and return back the
requested information (Step 4, 5). In turn, the DCM on A
forwards this information to its LCM (Step 6). The LCM
then chooses a page owned by B to be replaced according to
the following criteria (Step 7): If there is a page whose status
is replicated, then choose a replicated page according to the
LRU principle. Otherwise, if there is a clean page whose
status is single, then choose a single clean page by LRU.
Otherwise, choose a single dirty page by LRU.

If the replaced page is dirty (the third case), then the LCM
contacts the I/O manager of the disk to write back the page
(Step 8). (This step is not necessary if the page is clean.) A
lottery-based algorithm is used to choose a node to which to
evict the page. The objective is to maintain a “near optimal”
cache hit ratio with littleoverhead (as demonstrated in Section
5.1). Intuitively, for a node, it does not matter which other

node caches the evicted page for it as long as the page can be
cached by some node. Therefore, a restricted global LRU (as
implemented in PGMS [12]) is not necessary due to the large
overhead incurred. Instead, we use a lottery-based approach
to maintain the same remote cache hit ratio with little over-
head. Each node has some probability to be chosen. Each
probability is proportional to the size of available memory at
the node. For example, a node with 10 MB spare memory is
twice likely to be chosen as a node with 5MB spare memory.
In order to achieve this, each node multicasts the size of its
available memory whenever such size changes by a certain
percentage.

Let C be the selected node. The LCM on A forwards the
node ID of C and the address and page ID of the replaced page
to its DCM (Step 9). The DCM will then send the page to its
peer at node C (Step 10). The DCM on C stores this page via
its LCM (Step 11 — 13) and sends back an acknowledgment
to its peer at A (Step 14). Finally, the DCM sends a message
to its peer at the owner (node B) to update the data page cache
table accordingly (Step 15, 16). Note that if node C does
not have space to hold the page, this page would be simply
discarded.

4 Dynamic File Management

In Dynamo, file server functionality can be migrated dynami-
cally to any machine (preferably less loaded or idle machines),
and thereby, automatically adapt the file management system
to the available resources (CPU, memory, machines) in the
LAN.

The file manager performs most of the traditional data man-
agement functions in Dynamo. It interacts with application(s)
and cooperates with the cache manager on the same node. In
general, a large amount of data is assigned to a file manager
initially, but the file manager may relinquish the ownership of
some data to other file manager(s) at a later time. In this sec-
tion, we describe the process of initial ownership assignment
via the coordinator and the exchange of ownership between
two nodes in more detail.

4.1 Initial Ownership Assignment

The coordinator plays the bookkeeping role of the ownership
transfer of all data via the global ownership table. Each entry
consists of the ID of the owner (0 represents no owner) for each
highest level homogeneous entity (as shown in Figure 3(b)).
The initial table consists of all root entities; if a root entity is
split (because of ownership transfer), the old entry is deleted
and the new entries of its children are inserted. The same
procedure follows for further splits for the ownership of an
entity. If all existing children of an entity has the same owner,
the entries for children entities are deleted, and the entry for
the parent entity is inserted. This table structure is designed



File Manager File Manager File Manager

I/O manager

Disk Controller

8

Node B

4 16
Distributed Cache Manager10

14

3
5

15

Local Cache Manager

Distributed Cache Manager

Local Cache Manager
12

11 13

Distributed Cache Manager

Local Cache Manager

2 6 9

1 7

(new holder)
Node C

(retriever)
Node A

(owner)

Figure 8: Page Replacement

to support the efficient splitting and merging of ownership in
Dynamo.

The initial ownership assignment is performed by the co-
ordinator (which might be central or distributed). Initially,
a file manager gets a file request from an application, and
determines the data page(s) on which the file is stored. The
file manager tries to find the owner of the data pages via the
coordinator. If the coordinator determines that the data is
not ‘owned’ yet, it assigns the requesting file manager as the
owner. In order to minimize this kind of request, the coor-
dinator assigns a much larger partition of the data to the file
manager. The coordinator identifies the data entity containing
the requested data pages in the data hierarchy, and traverses
the hierarchy upward to determine the largest subtree of the
hierarchy containing the requested pages, which is not owned
yet6. The owner is always responsible for managing the file-
to-page-to-block informationuntil it releases ownership either
to another file manager or the coordinator.

4.2 Re-Assigning File Management at Run
Time

When file manager B accesses data that is currently owned by
file manager A, B and A can decide whether the ownership of
the data should be transferred to B. Criteria for the ownership
transfer are the workload on both machines, the intended
duration of data usage, and the estimated further usage of
the data by the owner. A file manager will be interested in
keeping ownership of data if it expects to use the data in the
near future because of shorter round-trips to find, get, and
manage data than if the data would be managed by another
node. If an ownership transfer is desirable, A decides to
transfer ownership of a subset of its data to file manager B.

We assume that the requested entity is v0; v0 is a descendant
of v which is an entity that is owned by file manager A. A
decomposes v into a set of child entities; one of the children
contains v0. A checks whether it needs the child entity of
v that includes v0. If so, A decomposes this child entity
recursively until an entity v1 is reached so that A will not
use in the near future and v1 contains v0. The ownership

6At system start-up, this is a root entity within the hierarchy.

of v1 is transferred to B by A. The file manager A notifies
the coordinator. In turn, the coordinator starts an ownership
transfer process similar to a two-phase commitensuring that
B, A, and the coordinator have stable and actual information
about the ownership transaction. Figure 9 shows the major
steps involved in ownership transfer.

Assume that v was divided intov1 and v2. At a later time, if
the ownership of v2 is also transferred toB before it relinguish
the ownership of v1, B will merge them into a single entry v
in its onwership table and inform the coordinator. The goal
of this process is to keep a minimal list of entities in the
ownership table.

5 Experimental Results

Our Dynamo prototype is implemented in C and is running
on a workstation farm running the Sun Microsystems Solaris
2.6 operating system. The cluster of UltraSparc machines
with 167 MHz CPU and 80 MB main memory are intercon-
nected via 100 Mbit/sec Ethernet. The page size is 8KB and
we use an 8-byte ID for each page and internal entity in the
hierarchy. The cooperative cache management algorithm is
implemented on top of the UNIX memory management layer.
For the lottery-based page evictor algorithm, the UNIX func-
tion random() is used to generate random numbers. The
ownership table and cache tables are implemented using a
hash table. The data is stored on a 7200RPM Quantum Atlas
III SCSI disks drive with 7.8ms average seek time. The disks
are attached to an idle workstation to simulate the effects of
network attached storage.

Since there are several contributions of Dynamo, i.e.,
lottery-based page eviction, migration of management, we
distinguish each technique in the subscript. For example,
Dynamol denotes the Dynamo implementation with the
Lottery-based eviction algorithm while Dynamol;m denotes
the Dynamo implementation with lottery-based eviction and
migration of management techniques.

To characterize the performance of Dynamo, we used two
real applications:

1. OO7 is an object-oriented database benchmark that
builds and traverses a parts-assembly database [2].



Global Owner Table
v1 Node B

Node Av2

5

File Manager/Owner

Cache Manager

Node B
(new owner of v1)

9

1

3 6

8

10 13 14

4

12 11

1. File Manager on node B contacts the coordinator to determine the owner of data entity v1.
table for the owner of v1.
parent of v1. 
and v2 (the only fanout of v), and packages the global caching information for v1.
impending ownership transfer of v1 to B.
informatiuon, and locks the entry for the time being.
manager B.
10. The file manager B notifies the coordinator that it has finished updating its information. 
manager A to delete the ownership informaiton of v1.
coordinator notifies B that it is the owner of v1.

3. The coordinator sends back the information that the file manager on node A is the owner of v which is the

7. The coordinator updates the global ownership table, splits v into v1 and v2, updates the owner
8. The file manager A sends all necessary NAS, cache, and locking information to file

9. The file manager B updates its local cache tables, stores the NAS information, and updates the data page cache table.
11. The coordinator, then notifies the file

12. The file manager A acknowledges the deletion to the coordinator. 13. The
14. File Manager B acknowledges.

in the global ownership table.
15. The coordinator unlocks the entries of v1 and v2

5. The file manager A decides to split v into v14. The file manager B contacts file manager A to request the ownership of v1.

2. Coordinator checks the global ownership

6. The file manager A notifies the coordinator about the

Coordinator

2 7 15

Core Node Node A
(owner of v, later owner of v2)

File Manager/Owner

Cache Manager

Figure 9: Ownership Migration

Our experiments traverse an existing 650MB database
mapped into memory.

2. ScourNet is a trace of a public web search engine
“scour.net”. scour.net uses an 1 GB database to answer
queries.

5.1 Lottery-based Page Eviction

In this set of experiments, we are evaluating the benefits of
employing the technique of lottery-based page eviction by
comparing it against random eviction and the PGMS model
[12].

In the random eviction scheme, when a page is evicted, the
page will be evicted to any node in the LAN with the same
probability. If the node to which the page is evicted has no
available memory, then the page is simply discarded. Since
each node does not have a global picture of the memory usage
at other nodes, the overall cache hit ratio could be impacted
when there are a significant number of nodes in the LAN
without any available memory. (Pages evicted to these nodes
will be discarded.)

In PGMS, the least loaded node in the system is chosen as
the leader periodically. The leader receives the buffer infor-
mation of all nodes, and centrally computes the replacement
set of pages for each node. The length of each epoch is usu-
ally between 5 to 10 seconds. The goal of PGMS is to utilize
the available global cache so that the average access latency
can be minimized. However, it requires the synchronization
of all nodes. Moreover, with an increasing number of nodes,
the leader has to spend more CPU cycles to compute the pos-
sible number of pages can be replaced on each node and it is
more likely that the number of pages which can be replaced
on a node will change more rapidly and epochs have to be

restarted. Therefore, a significant overhead may occur and
scalability can be impacted.

In the following subsections, we investigate the cache hit
ratio and response time of these schemes in detail. All experi-
ments were performed with 5 nodes but varying memory size
per node across experiments in this subsection.

Random

Dynamo l

PGMS

20 8040 60 20 8040 60

60

40

20

80

C
ac

he
 H

it
 R

at
io

 (
%

) OO7

(b)

ScourNet

Memory Size
(a)

20 8040 60 20 8040 60

2

4

6

8

Sp
ee

d 
U

p

OO7 ScourNet

Memory Size

Figure 10: Three Cache Eviction Schemes

5.1.1 Cache Hit Ratio

Figure 10(a) show the average cache hit ratio. The cache hit
ratios of Dynamol and the PGMS model are similar and are
significantly higher than that of the random eviction scheme.
The main difference betweenDynamol and the PGMS model
is the selection of the node from which a page will be evicted.



The page eviction scheme in PGMS model employs a re-
stricted global LRU algorithm. On the other hand, in the
lottery-based eviction algorithm, a set of candidate pages for
replacement will be chosen. However, there is no strict order
of replacing these pages. For the page evictor, it does not
matter which node caches the evicted page. For the cacher, it
does not matter which pages it caches for other nodes as long
as it does not loose any useful pages. With the lottery-based
eviction scheme, the probability that the evicted page will be
discarded is very low when there is any available memory.
Therefore, Dynamol and the PGMS model have a similar
cache hit ratio.

5.1.2 Average Performance

The speed up factor is chosen to describe the average re-
sponse time of retrieving a data page under the three schemes,
respectively. We use the non-cooperative caching scheme as
the base. The speed up factor is the ratio of the average time to
fetch a page in a non-cooperative caching system over the av-
erage time to fetch a page with either random eviction, PGMS
model, or the lottery-based eviction scheme. Figure 10(b)
shows the speed up factor of the three cooperative caching
scheme with respect to the non-cooperative caching model.
When the collective overall memory size is less than the work-
ing set, the speed up factor increases because the cache hits
increase. As a result, fewer page faults occur7.

5.2 Scalability of Dynamo Caching Scheme

In this section, we analyze the scalability of Dynamol , i.e.,
performance as the number of nodes in the LAN increases.
In this set of experiments, we fix the size of memory on each
node to 60MB and vary the number of nodes. Figure 11 (a)
and (b) show the cache hit ratio and average performance,
respectively. Dynamol and the PGMS model have a similar
cache hit ratio while Dynamol has the best performance
because of the high cache hit ratio and the low overhead.

5.3 Migration of Management

Here we examine the effects of migration of management by
comparing Dynamol;m (the Dynamo implementation which
employs dynamic migration of management with lottery-
based page eviction scheme) against the Dynamo implementa-
tion which employs the lottery-based page eviction with static
partition of management, denoted as Dynamol . We evalu-
ate the benefits of migration of management in the aspects of
scalability (increasing number of applications on each node)
and adaptability (changing data access pattern). In this ex-

7When the collective overall memory size is larger than the collective
working sets, the cache hits remain same since all working sets can be cached
in global memory.

60

40

20

80

C
ac

he
 H

it
 R

at
io

 (
%

)

2 4 6 8 2 64 8

OO7 ScourNet

Number of Nodes
(a)

Random

2

4

6

8

Sp
ee

d 
U

p

2 4 6 8 2 4 6 8

OO7 ScourNet

Number of Nodes
(b)

Dynamo l

PGMS

Figure 11: Scalability of Three Schemes

periment, we fix the memory on each node to 60MB and the
number of nodes to 5.

5.3.1 Scalability

The workload is generated as follows: an application requests
data initially managed by one node with 40% probability and
requests data initially managed by each of the other nodes
with 15% probability. The average size of data in a request
is 2KB and after receiving the requested data, it takes the
application 5 seconds to process the data on average.

Figure 12(a) shows the average response time for an ap-
plication to receive the data as a function of the number
of applications on each node. When the number of appli-
cations is large, the average response time of data retrieval
with Dynamol is increasing at a much faster pace than that
of Dynamol;m because uneven distribution of management
makes Dynamol saturate faster.

of
 P

ag
e 

R
et

ri
ev

al
 (m

s)

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

of
 P

ag
e 

R
et

ri
ev

al
 (m

s)

Dynamo l,m

10
0

20

10

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

2

(b)

6 84
0

3

6

4K 6K 8K 10K2K

Dynamo l

αNumber of Applications
(a)

Figure 12: Effects of Management Migration

5.3.2 Adaptability

The workload in this experiment is generated in the same
manner as in the previous experiment except for one differ-



ence: the heavily loaded node changes with time. For the
first � requests, the heavily loaded node is A; for the next �
requests, the heavily loaded node is B, then C, then D, and
so on.

Figure 12(b) shows the average response time for a page
request. Here � can be viewed as the duration of one page
access pattern. When � is small (i.e., the hot spot changes
very rapidly), migrationof management does not help because
the migration itself takes a significant amount of resources
and time. (The migration of management is invoked only
when a significant change of workload or data access pattern
is detected.) When the � is larger (i.e., the change of data
access pattern is more permanent), Dynamol;m outperforms
Dynamol significantly due to the more even distribution of
workload on each node withDynamol;m .

6 Related Work

The design of Dynamo is motivated by several systems such as
NASD [6] which employs ‘third-party transfer’ of data from
network-attached storage devices directly to client machines.

Initial work on a more scalable approach to client-server
architectures was done by Franklin, Carey and Livny [5]. The
serverless network file system (xFS) was developed at the
University of California at Berkeley [1] as part of the NOW
(Network of Workstations) project to address the problem of a
highly scalable file system in a distributed environment using
cooperative caching.

There are two research directions related to overall global
cache management: the first focuses on a centralized man-
agement component that has a central view of the caches of
all clients and optimizes the page replacement strategy with
respect to the needs of all clients [4, 7, 12]. The second one
focuses on global cache replacement strategies that are man-
aged by clients in a decentralized manner [4, 10]. Voelker et
al. [12] proposed a globallymanaged prefetching and caching
system, the PGMS system.

Related work in the area of cooperative caching system
for object-based systems (persistent objects, object-oriented
database management systems) has been done in the Shore
[3] system, and in Thor [8] and Hac [9].

7 Conclusion

We have presented the complete design for a scalable, fault-
tolerant, cooperative file management system for LAN en-
vironments that is dynamically adaptive to configuration
changes. In addition, the design can adapt to shifting work-
loads and hotspots in file access. Extensive performance stud-
ies have shown that this extension can result in significant
improvements in page fault response times by increasing the
hit rate on remote nodes (rather than having to make a disk
access).

References

[1] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Pat-
terson, and others. Serverless network file systems.
ACM Transactions on Computer Systems, Feb. 1996,
vol.14, (no.1):41-79.

[2] M. Carey, D. DeWitt, and J. Naughton. The oo7
benchmark. Proceedings of the ACM SIGMOD Con-
ference, 1993.

[3] M. Carey, D. DeWitt, M. Franklin, N. Hall, et. al.
Shoring up persistent applications. Proceedings of
the ACM SIGMOD Conference, 1994.

[4] M. Dahlin, R. Wang, T. Anderson, and D. Patterson.
Cooperative caching: using remote client memory to
improve file system performance. Proc. of 1st Symp.
on Operating Systems Design and Implementation,
1994.

[5] M. Franklin, M. Carey, and M. Livny. Global mem-
ory management in client-server DBMS architec-
tures. Proc. of the 18th VLDB Conference, 1992.

[6] G. A. Gibson, D.F. Nagle, K. Amiri, F. W. Chang.
File Server Scaling With Network-attached Secure
Disks. Performance Evaluation Review, June 1997,
vol.25, (no.1):272-284.

[7] A. Leff, P. S. Yu, J. L. Wolf: Policies for Efficient
Resource Utilization in a Remote Caching Architec-
ture. Proceedings of the First International Confer-
ence on Parallel and Distributed Information Sys-
tems (PDIS), 1991.

[8] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghe-
mawat, R. Gruber, U. Maheshwari, A.C. Myers, L.
Shrira: Safe and Efficient Sharing of Persistent Ob-
jects in Thor, SIGMOD, 1996.

[9] M. Castro, A. Adya, B. Liskov, A.C. Myers: HAC:
Hybrid Adaptive Caching for Distributed Storage
Systems. Proc. of the ACM Symposium on Operat-
ing System Principles (SOSP’97), 1997.

[10] P. Sarkar and J. Hartman. Efficient cooperative
caching using hints. Proceeding of Third Symposium
on Operating System Design and Implementation
(OSDI), 1996.

[11] Scour Search Engine. http://www.scour.net

[12] G. Voelker, E. Anderson, T. Kimbrel, M. Feeley,
J. Chase, A. Karlin, and H. Levy. Implementing
cooperative prefetching and caching in a globally-
managed memory system Proc. of the ACM SIG-
METRICS Conf., 1998.


