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Recent developments in miniaturization of computing devices, in location-sensing technology and in ubiquitous
short-range wireless networks enable new types of social behaviour. This paper investigates one novel application
of these technologies, ad-hoc inner-urban shared-ride trip planning: Transportation clients such as pedestrians are
seeking ad-hoc shared rides from transportation hosts such as private automobiles, buses, taxi cabs or trains. While
centralized trip planners are challenged by assigning clients and hosts in an ad-hoc manner, in particular for non-
scheduled hosts, we consider the transportation network as a mobile geosensor network of agents that interact locally
by short-range communication and heuristic wayfinding strategies. This approach is not only fully scalable; we can
also demonstrate that with short-range communication, and hence, incomplete transportation network knowledge a
system still can deliver near-to-optimal trips.

Keywords: route planning, incomplete knowledge, mobile geosensor networks, negotiation strategies, heuristic
wayfinding strategies.

1 Introduction

Urban mobility can be greatly enhanced by concepts of ride sharing. Wherever ride
sharing has evolved, the process was driven by social conventions more than by
technological progress (Resnick 2004), avoiding to tackle the complexities of ad-
hoc shared-ride trip planning and assignment. However, with the capabilities of to-
day’s technology of small-form, handheld computing devices, location sensing and
ubiquitous wireless communication networks—combined to ad-hoc mobile geosen-
sor networks (Stefanidis and Nittel 2005)—, new types of multimodal, real-time trip
planning and booking systems become possible. We envision a system that integrates
the transportation capacities of all types of (volunteering) vehicles in urban traffic in
order to identify a trip for persons with an ad-hoc travel demand. The system shall
assign persons, or transportation clients, to vehicles, or transportation hosts, with
matching travel plans and free transportation capacities, in an ad-hoc manner.

In this paper, we are looking into the complexities of the trip planning task of an ad-
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hoc shared-ride system. This task is challenging the current state of knowledge since
it copes with spatially and temporally incomplete transportation network knowledge.
In principle, ad-hoc shared-ride trip planning requires complete transportation net-
work knowledge for finding optimal solutions. But realistically it is impossible to
obtain complete knowledge of all vehicles that are currently and in near future in
urban traffic, their travel plans and their current and future utilization. This system
is dynamic and non-predictable. This means ad-hoc shared-ride trip planning has to
happen with incomplete knowledge regarding the future states of the transportation
system. It even has to cope with incomplete knowledge in its current state, given the
complexities of tracking large numbers of individual vehicles in real-time. Hence,
ad-hoc shared-ride trip planning can only come up with sub-optimal trips.

At the same time, the envisioned ad-hoc shared-ride system shall serve large num-
bers of concurrent clients, which is also different from traditional shared-ride sys-
tems. To cope with scalability we propose a distributed system of autonomous agents
solving trip planning locally. Technically, this system is an ad-hoc mobile geosen-
sor network, with nodes of transportation clients and hosts that are capable of self-
positioning and ad-hoc radio-based peer-to-peer communication. In this system the
clients will collect data about the current transportation network, plan a trip, and se-
lect hosts. Since communication in a geosensor network is expensive and needs to be
minimized for several reasons (e.g., bandwidth, time delay, and potentially battery
energy), we go a radical step further and limit the trip planner’s knowledge delib-
erately in the spatial dimension, by contacting only hosts nearby. In this case the
research question is whether spatially and temporally limited transportation network
knowledge still enables acceptable trips for trip planning clients.

The hypothesis of this paper is that mobile geosensor networks are an effective
and efficient approach to ad-hoc shared-ride trip planning. In this hypothesis we call
mobile geosensor networks effective if they come up with trips close to the optimal
trip according to a chosen cost function. We call them efficient if the communication
effort for an effective trip in terms of numbers of broadcasted messages in negoti-
ations was significantly lower than for collecting exhaustive transportation network
knowledge. We will collect evidence for the hypothesis in three steps: we will show
(i) that current optimal trips can be found in geosensor networks, (ii) that trips can be
generated with local knowledge only, and (iii) that trip quality and negotiation effort
can be balanced by choosing a spatially limited negotiation strategy.

We show these properties by simulation. For this purpose we develop a two-way
trip negotiation process, and investigate the implications of different spatial ranges of
this process. We develop a protocol that directs messages of the two-way negotiation,
and increases its efficiency. Since any trip plan is bound by incomplete knowledge,
negotiations be scheduled recursively, such that trip plans can be updated regularly.
To study only the implications of negotiation ranges, we choose a fix and simple
wayfinding heuristics.

We investigate three different negotiation ranges. First, a spatially unconstrained
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negotiation range is applied. It yields exhaustive transportation network knowledge
of the current situation, and hence, currently optimal shared-ride trips. Next, two
spatially limited negotiation ranges are investigated, and their effectiveness and ef-
ficiency is assessed by their average shared-ride trip durations, including wait and
travel time, and their broadcasting efforts compared to the first strategy. We demon-
strate that short negotiation ranges save broadcasting costs and still deliver near-to-
optimal trips.

The paper is structured as follows. Section 2 discusses related systems and tech-
nologies. Section 3 describes in detail the problem of shared-ride trip planning in the
envisioned system. In Section 4, the necessary components of a mobile geosensor
network are explained. In Section 5 we formalize the negotiation process between
transportation clients and hosts in geosensor networks for the purpose of simulation.
The results of the simulation are discussed in Section 6. The paper closes with a
summary and an outlook on open questions in Section 7.

2 The position of shared-ride trip planning using geosensor networks

In this section we introduce trip planning services, shared-ride systems and mobile
geosensor networks, and relate them to ad-hoc trip planning and local problem solv-
ing.

2.1 Current trip planning systems

Current approaches for real-time individual trip planning are based on centralized
services. This is the case for current commercial solutions, and also for research ap-
proaches (Ziliaskopoulos and Mahmassani 1993, Fu 2001, Dillenburg et al. 2002,
Chon et al. 2003). A centralized trip planning system typically consists of a database
management system that stores a global view of the transportation network. It keeps
track of all changes made by continuously moving agents, and either plans optimal
trips for all clients (for example, a real-time train trip planner), or it broadcasts traffic
conditions to autonomously planning clients (for example, a car navigation system
analysing the traffic message channel). Aggregated traffic information is not suffi-
cient for shared-ride trip planning. – In a continuously and unpredictably changing
environment, the centralized database system becomes easily the bottleneck just due
to the location updates of agents moving in an unconstrained manner. Furthermore,
each change in the network potentially requires updating all trip plans and assign-
ments. On top of this, for a shared-ride system the system has to manage real-time
communication with clients and hosts. Since any client is potentially related to any
host, complexity grows exponentially with the number of clients, which means the
system is not scalable.

Using geosensor networks, trip planning becomes a collaborative task in a dis-
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tributed network of mobile nodes, with ad-hoc peer-to-peer communication (Zhao
and Guibas 2004, Stefanidis and Nittel 2005). In this way, the type and design of
the communication between the peers becomes the key to dynamic trip planning.
This approach can be fully scalable if every new transportation request can be solved
locally in the geosensor network. Applications for mobile sensor networks already
envision transportation systems (Zhao and Guibas 2004). Sussman (2000) catego-
rized transportation systems by a schema, according to which ad-hoc shared-ride
trip planning in mobile geosensor networks can be characterized by individual trav-
ellers, urban transport, and private operation. Nijkamp et al. (1996) identify travel
information as one of the major functions of transportation systems.

2.2 Social parameters of shared-ride systems

Shared-ride systems enjoy some popularity in defined communities, while public
shared-ride systems are currently not popular. One of the reasons is the association
with hitchhiking. In some cultures hitchhiking has a negative connotation, but not
everywhere. Another reason is the inflexibility of current shared-ride systems with
real-time travel needs in a dynamic environment. Shared-ride agencies such as the
Mitfahrzentrale1 or RideNow2 expect that car drivers as well as passengers register
their offerings and needs, respectively, well in advance. Institutionalized commercial
ad-hoc shared-ride systems such as SuperShuttle3 operate only from well-known
pick-up points and rely on social conventions such as branding. Route planning is
still done by the shuttle drivers and is part of the human-human interaction.

However, the current situation is surprising given the enormous potential for
shared-ride systems predicted by traffic managers (Dillenburg et al. 2002) or social
scientists (Noda et al. 2004, Resnick 2004). Resnick, for example, names some suc-
cessful shared-ride systems that are ad-hoc without any technological support and
function only by social conventions, for example, by waiting for a ride in queues at
well-known pick-up points. A more predictable solution, like the proposed one, has
therefore the potential for significant social and economic impact.

Hence shared-ride systems have to consider some implications and challenges
prior to any realization. They comprise, for example, trust and safety, liability, eco-
nomic incentives and business models (McCarthy 2001), urban mobility and access,
fair share (Naor 2005), and privacy (Monmonier 2002). A particular concern is the
change of a potentially negative public perception of shared-ride travelling, and re-
lated to that, a change in the proxemics of the involved social beings (Hall 1966).
When we look into trip planning we are aware of all these other aspects, but leave
them for further work.

1Mitfahrzentrale™: http://www.mitfahrzentrale.de
2RideNow™: http://www.ridenow.com
3SuperShuttle™: http://www.supershuttle.com
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2.3 Mobile geosensor networks

Geosensor networks are a specific type of sensor networks. A sensor network consists
of a large collection of individual small computing platforms (nodes) each of which
can be equipped with a variety of micro-sensors and is capable of wireless short-
range communication (Zhao and Guibas 2004). A geosensor network has at least
one positioning sensor node such as a GPS receiver as part of the overall network, so
that all other nodes can derive at least their relative geographic position (Stefanidis
and Nittel 2005). In mobile geosensor networks, each node is likely to contain a
private location sensing capability. Mobile nodes of a geosensor network collaborate
in an ad-hoc, task-oriented fashion. In the literature such network topologies are also
called mobile ad-hoc networks or MANETs (e.g., Gerla et al. 2005). Today, an ad-
hoc mobile geosensor network can be established using hand-held devices as used
by pedestrians and automobile drivers; in the near future, hand-held devices will be
replaced with cent-size computing nodes that are embedded in cell phones, watches
or car navigation systems.

Using wireless sensor networks, several technical solutions or media for wireless
communication are possible; they can be classified into short-range and wide-range
wireless communication (Zhao and Guibas 2004). To preserve energy, the RF signal
strength is kept low. For our type of geosensor network, short-range wireless com-
munication such as Bluetooth or WiFi is of interest. Each client and host is a radio
sender as well as a receiver, and broadcasting is used to generate or forward messages
to other agents in the reception area of a sender. Since radio range of these technolo-
gies is between 3m and 100m, messages can be re-broadcasted by recipients to reach
agents in larger distance (multi-hop). However, the decision whether an agent will re-
broadcast a message, and to whom, influences the spread of the information in the
network and the congestion of the network bandwidth so that an optimal trade-off
between both has to be found. Furthermore, to minimize energy consumption broad-
casting in wireless sensor networks networks can be synchronized, and thus, it might
takes place in relatively short and synchronized communication windows; the rest
of the time the network nodes turn off the radio to preserve energy. The length and
frequency of these communication windows depends on the application needs, but it
limits the numbers of messages passing through each node.

Other work concentrates on one-way information dissemination about events in
mobile geosensor networks (Nittel et al. 2004, Wolfson and Xu 2004). An initial
classification of information dissemination strategies was (Nittel et al. 2004):

(i) flooding: each agent that receives a message about a client request passes on the
information repeatedly to every other agent within its radio range. Each receiving
agent also passed on the information to any other node in the network.

(ii) epidemic: each agent passes on the information to only the first k other agents it
encounters. The receiving agents will proceed similarly.

(iii) location-constrained: requests are re-broadcasted by an agent only within the spa-
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tially constrained proximity of the original request, and then no longer passed on.

However, the present problem of trip negotiations needs an appropriate two-way
communication between the communication originator and hosts within the chosen
negotiation range. This needs to be studied in more detail.

3 The problem definition

In this section we study in detail the ad-hoc shared-ride navigation problem in an
unpredictably dynamic transportation network, and compare it to current trip plan-
ning systems. For that purpose we also introduce a scenario of ad-hoc shared-ride
travelling in an urban environment.

3.1 A shared-ride planning and assignment system

Consider the following scenario. Hillary has just missed her bus to work today.
Around Hillary is heavy traffic. Now, she is glad to have subscribed to a transporta-
tion service that mediates between her current travel needs to her destination, and
those buses, trams, taxis and subscribed car drivers who are going in her direction.
She switches on her device, which immediately starts to communicate with devices
of vehicles close by and starts trip planning and booking. Soon after, Hillary sees a
friendly car driver stopping to give her a ride. The ride takes her on the first leg of
her trip. During the ride, her device still runs in the background. It looks up in the
network for appropriate transfers, and books them for Hillary. Hillary will be on time
for work today.

In contrast to current real-time route planning services, Hillary’s service has no
central communication and planning component. Instead, all negotiations happen
directly between Hillary’s device and the devices of vehicles close by. In this way,
the data for trip planning is always current, but local. Spatial proximity of clients and
hosts is dictated by the limited radio range of the devices, where larger ranges can be
accomplished by message forwarding.

3.1.1 The transportation client agents. In the scenario people like Hillary are look-
ing for rides from their current position to a particular destination. We call these
travellers, or more precise, their devices, transportation client agents, or clients for
short, and denote them by Ci. Clients are mobile agents that sense their own current
location, communicate with near-by agents, plan a shared-ride trip, and act by taking
a ride or moving autonomously. The negotiation between transportation agents en-
compasses that the clients can broadcast a request (which may be forwarded), collect
offers, and book specific transportation hosts.



Ad-hoc shared-ride trip planning by mobile geosensor networks 7

3.1.2 The transportation host agents. In the scenario transportation host agents, or
hosts for short, are the devices of all sorts of vehicles, such as private cars, buses,
taxis, or subways. Hosts are denoted as Hj . The travel plans of hosts form the links
of a transportation network. These links are spatially bound to the street network,
but temporally highly irregular. Some types of hosts follow pre-defined routes, other
types have no routes, or can change their routes ad-hoc.

In general, future states of the transportation network cannot be seen though. All
vehicles are at least to some extent autonomous. Taxis and car drivers do not follow
any schedule, and buses and trams frequently run out of schedule. At any time a new
vehicle can enter the traffic and offer rides, current vehicles can get occupied and
are temporarily not available—in particular private cars offer a rigorously limited
transportation capacity—, and other vehicles reach their destination and withdraw
from the network.

3.1.3 The shared-ride transportation network. In our scenario, traffic is bound to the
physical street network. From a network perspective, the dynamic provision of trans-
port along network edges (street segments) forms a time-dependent cost function for
these edges. Clients travelling along a street segment have to wait until a host with
free capacity comes along.

Not all future transportation opportunities are known at a time tk. Consequently
there is no guarantee for any connected sequence of host segments to the client’s
destination in any trip planning process, and new knowledge might only emerge over
time during travelling. We can assume, however, that every client finds transportation
to his/her destination sooner or later.

The relevance of transportation hosts for trip planning decreases with spatial dis-
tance from a client. A distant host becomes only relevant if the client does not find
a nearer host, i.e., departs sooner anyway. If the distant host is outside of the client’s
search range, she will wait until suited hosts appear in her range.

In all these aspects the transportation network differs fundamentally from classical
multi-modal networks, which are assumed to be scheduled and always connected. In
multi-modal networks the time-dependent cost functions are predictable and known
in advance. Additional components might consider real-time information on delays
and updated schedules (Ziliaskopoulos and Wardell 2000). Other time-dependent
route planning algorithms assume static (street) network with dynamically changing
weight functions, for example, according to the current traffic situation (Chon et al.
2003). Schedule-based algorithms can be found in the literature (Cooke and Halsey
1966, Klafszky 1972, Peng and Tsou 2003, Orda and Rom 1990). Implemented in
central services, for example in Web services for public transportation planning, they
rely on comparatively small concurrent user numbers.
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3.2 A shared-ride wayfinding heuristics

Hillary is looking ad-hoc for a ride in a dynamic transportation network. The system
on her device, the client agent, can only gain temporally and spatially limited knowl-
edge of the actual transportation network. Hence the client agent needs wayfinding
strategies to deal with the incomplete network knowledge, especially with gaps.

Client agents can select different wayfinding strategies, which vary the navigation
result. For example, clients can apply the least-angle strategy, choosing from the
available hosts the first that goes in their direction, or they can apply a longest-leg
strategy, looking for the host that brings them closest to their destination (Hochmair
and Frank 2002). However, investigating different navigation strategies is beyond the
scope of this paper. Instead, we choose one strategy, and focus only on the effects of
different communication strategies. Other wayfinding strategies will be affected by
different communication strategies in similar ways.

We assume that client agents know the street network, but have limited knowledge
of the actual traffic and ride opportunities. In this case, a client agent can choose to
stick to the shortest distance route, or one of them if there are several, and look for
transport along only this route. This wayfinding strategy is conceptually related to
the least-angle strategy: the selected route is the graph geodesic. In contrast to the
least-angle strategy, the shortest route strategy is not burdened with the danger of
running into dead-ends.

Applying this wayfinding strategy requires no route planning after the initializa-
tion. The client’s and hosts’ devices only need to match sequences of street network
edges to find overlaps between demand and supply. This aspect makes the wayfind-
ing strategy computationally cheap. Furthermore, the information needs of the client
can be specified straightforward: they concern transportation along the edges of the
chosen route. Offers consist of subsets of these edges, attached with time stamps.
This means, with this strategy the message lengths are manageable (linear with the
length of the route), and the agents’ internal main memories are not burdened much,
only by strings and pattern matching.

The chosen wayfinding strategy is heuristic, which can lead to suboptimal results:
the shortest distance route is not necessarily the fastest overall. However, in this
paper we are only interested in the effects of different communication strategies, and
compare therefore the trips travelled by the clients with the trips the client would
make with exhaustive network knowledge. In contrast, a comparison with the overall
fastest route would assess the wayfinding strategy, which can be done in future work.

4 Ad-hoc mobile geosensor networks for trip planning

In this section we consider the acting agents in the trip planning process as nodes in
an ad-hoc mobile geosensor network, and we introduce some relevant communica-
tion concepts of geosensor networks for shared-ride trip planning.
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4.1 A mobile geosensor network of clients and hosts

In our context, each geosensor node runs a local agent which is either a transporta-
tion client or host. The collaborative task of the geosensor network is shared-ride
trip planning with clients becoming their own trip planners. They communicate with
nearby hosts to learn about currently available transportation means. They select
some of the hosts, book them, and travel with them.

Roussopoulos et al. (2004) have developed criteria to decide whether a problem
is a ‘peer-to-peer problem’. Referring to these criteria, ad-hoc shared-ride trip plan-
ning is clearly a case for peer-to-peer approaches (as realized by mobile geosensor
networks):

• low-budget decisions: transportation information is a penny business.
• relevance: local communication in a geosensor network reaches the relevant

agents, and directing messages will further reduce any unnecessary communica-
tion.

• trust: there is low motivation for giving false transportation information.
• rate of change: the rate of change in a mobile geosensor network is high. While

this may be a disadvantage in a distrustful environment, we even argue that in our
case the high rate of change is a motivation for a peer-to-peer solution.

• criticality: transportation information is uncritical; if the optimal trip cannot be
detected the second optimal will do.

4.2 Local communication for trip planning in dynamic networks

To determine an optimal shared-ride trip, a client needs to maintain information about
all transportation hosts that are relevant to the planned trip. Given the dynamics in the
transportation network it seems promising for clients to achieve partial trip planning
with local knowledge, and to update trip plans in intervals in order to achieve an
overall optimum for the entire trip.

From a trip planning perspective, the probability is higher that nearby transporta-
tion hosts contribute to optimal (fastest) trips, because clients will wait less long for
them than for hosts far away (assuming that travel speeds are homogeneous). Also,
hosts that reach the client sooner will likely be selected by the client, because the
network has not changed much since booking, and there might not be much new
evidence for changes in bookings.

From a geosensor network perspective, energy is one of the scarce resources, and
the most energy-consuming activity of a node is using the wireless communication
medium. Another scarce resource in the network is physical communication band-
width, which is likely the more relevant bottleneck in this particular problem. For
both reasons the number of messages has to be minimized.

Hence, the question arises, by which ways and at which costs (in terms of increas-
ing trip duration) the spread of messages can be focused.
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4.3 Negotiation ranges for ad-hoc shared-ride trip planning

In our scenario all transportation agents communicate with neighbouring agents in
synchronized communication windows. Within these communication windows ne-
gotiations for trip planning and booking have to be accomplished.

In contrast to the problems of information dissemination in mobile sensor net-
works, negotiations for ad-hoc shared-ride trip planning require two-way communi-
cation. This negotiation process consists of three steps: (i) the client sends a request
into the network, (ii) the hosts having relevant information return offers, and (iii) the
client books the host with the optimal offer. Negotiation needs some kind of transac-
tional protocol that makes clear to both clients and hosts that they created a contract.
Requests of clients form messages that are addressed to everyone (no addressee in
particular), and disseminated into the network. Offers from hosts and booking mes-
sages from clients, however, are directly addressed, passing them through a rein-
forced, preferred chain of communication hops between the client and the host. This
path was established in the phase of the dissemination of the request.

Negotiations for ad-hoc shared-ride trip planning require communication windows
being long enough to accomplish the full negotiation procedure. This means that a
communication window has to allow multiple hops. At the same time communica-
tion windows have to be short enough to guarantee a stable communication network
topology for directed messaging. As a rough estimate, if urban traffic flows with
30km/h a window of two seconds would allow nodes to move 16m, or less than
20% of a radio range of 100m. The movements are small enough to not (much)
change the network topology, but the two seconds will technically limit the maximal
number of hops. We further assume that no message survives a communication win-
dow, i.e., with the end of the communication window all for our purposes relevant
communication processes shall be completed.

Therefore the communication strategies for information dissemination (Section
2.3) have to be replaced by a strategy that allows for two-way negotiations in limited
ranges:

(i) unconstrained (closest match to the flooding strategy). Within one communica-
tion window each node of a geosensor network broadcasts every message it re-
ceives if it did not forward this message already. Clients can expect to get offers
from all reachable hosts, and hence, they get the most complete knowledge of the
current transportation network.

(ii) short-range proximity (closest match to the location-constrained strategy). Client
requests are communicated only to agents within their radio range (single-hop),
and offers and bookings are not forwarded either. The communication traffic in
the network is drastically reduced compared to the previous strategy. Energy sav-
ings will be significant. However, the client reaches a much smaller number of
hosts, and hence, will find suboptimal offers only.

(iii) mid-range proximity (another match to the location-constrained strategy). Client
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requests are passed on to a proximity defined by a number of hops. Compared to
short-range proximity the communication traffic is increased, but the hosts that
are reached are still in some proximity to the client. Thus the requests might reach
more relevant hosts than the unconstrained communication strategy.

5 Formalization and design of a simulation system

As we are interested in the effectiveness and efficiency of the negotiation ranges for
shared-ride trip planning, we develop a formal model of a street network with clients
and hosts that can be implemented for simulation purposes. We carefully observe the
criteria of credible simulation specifications (Pawlikowski et al. 2002, Kurkowski
et al. 2005).

5.1 The simulation parameters

The simulation happens in a regular grid ‘street’ network, and is structured by clock
cycles. Each cycle consists of two phases: one (instantaneous) phase of negotiations
between clients and hosts (a few seconds in the real world), and one phase of mov-
ing. After each cycle all agents are located at (or allocated to) intersections. Fur-
thermore, the radio range is assumed to be limited to one street segment, i.e., to the
four-neighbourhood of each intersection.

Clients know their current position and destination. They are immobile and can
only travel with hosts. Furthermore they apply a simple heuristic wayfinding strategy:
they travel only along the route of the graph geodesic to their desired destination.
They look for the fastest trip along this route; other cost factors are neglected. The
simulation knows a single client, and competing clients are modelled by a parameter
to specify average booking rates of hosts. The single client’s route is located in the
central part of the grid to avoid boundary effects in the simulation.

Hosts have randomly chosen trips of constant duration, which realizes a typical
random walk mobility model (Camp et al. 2002) of finite trips. Furthermore, hosts
are generated staggeringly: in each cycle, some hosts reach their destination, and
new ones are constructed. Hence, the host density is constant over time, and there is
some degree of surprise for every negotiation process. In our simulation all hosts are
moving with the same speed of one segment per cycle.

The remaining parameter in this process is the negotiation range, which can take
three values: unconstrained, short-range, or mid-range. In this system we are inter-
ested in two output parameters: the duration of the client’s trip, and the number of
broadcasted messages in all negotiation cycles during the travel. For the latter we
study next the number of broadcasts in one negotiation process. The algorithm devel-
oped will then run in each negotiation process; the numbers of broadcasted messages
simply add up. The simulation stops when the client reaches its desired destination.
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This type of simulation is also called steady-state.

5.2 The negotiation process

To model a negotiation process, we first switch from the street network view (Figure
1) to a communication network view (Figure 2). Then we specify the messages to be
exchanged and study their exchange.

Figure 1 shows a client C and seven hosts H1-H7 in the street network. With
a radio range of one segment, Figure 2 shows the corresponding communication
network. Two agents are connected by a link if they are in direct communication
range to each other. We call this graph a neighbourhood graph.

Figure 1. The locations of a client and seven
hosts in a transportation network (snapshot).

Figure 2. The communication network of the
agents, and, as the subset of solid lines, the shortest

path tree from C.

On this communication network we can demonstrate the three phases of each ne-
gotiation: sending requests r, sending offers o, and sending booking messages b. For
the demonstration we apply the unconstrained negotiation range, and we will discuss
in Section 5.3 the modifications for other negotiation ranges.

5.2.1 Requests. A client sends a request r specifying the sequence of street seg-
ments of their route ahead. In our example, the client C’s request is broadcasted
through the paths shown in Table 1. In this table, the agents that receive the request
for the first time (i.e., on the shortest communication path) are printed bold; the other
agents are printed in brackets. Only when agents receive a request for the first time
they broadcast it. That means, in this situation each agent in the connected network
broadcasts once. In other words, with an unlimited negotiation range the number of
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broadcasts of a request is equal to the number of agents in the client’s communication
network.

Table 1. Paths of request messages.

sender message receiver
C r 2
2 r 1, 5, 4, 3, 7, [C]
1 r [2], [5], [4], 6
5 r [2], [1], [4], [6]
4 r [2], [5], [1], [6]
3 r [2], [7], [6]
7 r [2], [3], [6]
6 r [1], [5], [4], [3], [7]

Furthermore, we introduce a message protocol that generates a history of hops.
Each broadcasting agent attaches its name to the request r, as shown in Table 2. In
that way, each recipient knows the shortest path back to the client sending the request.
This information can be exploited for directing the offer and booking messages.

Table 2. The history of hops attached to each request.

agent received request broadcasted request
C r, C
2 r, C r, C, 2
1 r, C, 2 r, C, 2, 1
5 r, C, 2 r, C, 2, 5
4 r, C, 2 r, C, 2, 4
3 r, C, 2 r, C, 2, 3
7 r, C, 2 r, C, 2, 7
6 r, C, 2, 1 r, C, 2, 1, 6

5.2.2 Offers. Any host receiving a request that matches in some parts with its own
travel plans, and having still free capacity, will respond by an offer o. The offer
specifies the identified street segments and their time stamps in the host’s schedule.
An offer is addressed and directed by reversing the history of the request. Only agents
on this list will forward the message.

In our example hosts H6, H3, and H2 are going to make an offer to C (o6, o3, o2).
The set of broadcasts for these offers is shown in Table 3. In the table, the hosts in
parenthesis are receiving a message, but are not on the address list, and hence, do not
forward the offer. Clients do not forward offers addressed to them. In other words,
each offer causes a number of broadcasts equivalent to the length of the shortest path
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branch between the offering host and requesting client. For illustration, Figure 2
shows the client’s shortest path tree of the neighbourhood graph.

Table 3. The paths of the offers.

sender message receiver
6 o6 (3), (7), 1, (5), (4)
1 o6 [(5)], [(4)], 2, [6]
2 o6 [1], [(5)], [(4)], (3), (7), C
3 o3 (7), (6), 2
2 o3 (1), (5), (4), [3], [(7)], C
2 o2 (1), (5), (4), (3), (7), C

5.2.3 Bookings. The requesting client collects all offers, and selects the optimal
one(s). Within our specifications the optimal offer is the one that promises the earliest
start. This choice has to be booked with the offering host(s).

In our example client C is going to accept an offer o3 from host H3. The set of
broadcasts for the booking message b3 is listed in Table 4. The table shows that each
booking causes a number of broadcasts again equivalent to the length of the shortest
path branch between the client and the offering host.

Table 4. The paths of the booking messages.

sender message receiver
C b3 2
2 b3 (1), (5), (4), 3, (7), [C]

Client C would also like to cancel a previous booking with host H7 (cancellation
message c7). Note that C currently has offers only from H6, H3, and H2 in hand,
and hence, does not know where H7 is. Host H7 may even be disconnected (it is
connected in our example). Because cancellation messages cannot be guaranteed to
reach their addressee, an alternative way of cancelling is used: previous bookings, if
not confirmed in this negotiation process, will time out automatically before the next
negotiation cycle.

5.3 Counting messages in a negotiation process

The negotiation process discussed above gives reason for the following algorithm
to count the broadcasted messages (Algorithm 1). First the algorithm computes for
a neighbourhood graph (line 3), and on this graph the shortest path tree (Dijkstra
1959) from the client (line 4). Then, of particular interest are the lines where the
counter for the number of broadcasts of messages no of messages is increased.
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The counter is set first to the number of connected agents since all agents broadcast a
request (line 7). Subsequently, the counter is increased by the lengths of shortest path
tree branches of offering hosts since an offer is broadcasted by all agents along the
shortest path tree branch from host to client (line 11). Finally, the counter is increased
by the same amount of broadcasts for the booking of a host by the client (line 14).

Algorithm 1. Counting the number of messages broadcasted in one negotiation cycle.

This algorithm was developed so far for the unconstrained negotiation range. How-
ever, it needs only a small modification to work for spatially constrained negotiation
ranges as well. For this purpose we introduce an additional parameter m specifying
the radius of the range. If m = 1 the simulation realizes a short-range negotiation,
and if m is larger the simulation realizes a mid-range negotiation. The unconstrained
negotiation can be considered as the special case of m = ∞. The parameter m can be
part of the request message. Each agent receiving such a request determines the num-
ber of the previous hops p (length p of the request history), and forwards the request
only as long as p < m. The rest of the negotiation process remains unchanged. With
other words, all that it needs is to cut the shortest path tree at level m in Algorithm 1.

6 Simulation results

The simulation was implemented in Java, and then observed for varying simulation
parameters. In the simulation, two characteristics are observed: the total number of
broadcasted messages and the number of time intervals the client C is travelling.
The reported results are average values and confidence intervals for large numbers
of simulations. The source code can be obtained from the first author to study the
simulation in detail or to repeat our experiments.
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For all experiments, the simulated world consisted of a 10 × 10 street grid, and
the client’s route in the center of the world was of length 5. Hosts were generated
at random locations and with random travel plans of constant length; the density of
hosts was kept constant over the duration of each experiment. Competition for seats
is introduced by a chance of a host being booked of 33%, and the radius m of the
mid-range communication strategy is set to 3. For each parameter pair of negotiation
range and host density we ran 1000 simulations.

The first insight is demonstrated in Fig. 3. Independently for the particular nego-
tiation range it shows the consequences of the variation in the density of hosts on
the probability of getting a ride. The higher the host density becomes the shorter the
trip durations. The relationship goes asymptotically to the route length since ideally
there are always hosts that offer a ride for the next street segment.

Figure 3. The average travel time depending on the negotiation range for various host densities.

The next step to investigate is the quality of the found trips depending on the cho-
sen negotiation range. Remember that the chosen optimization criterion is trip dura-
tion; the quality of the trip increases (only) as the trip duration decreases. Figure 3
shows three curves, one for each negotiation range. All curves behave similarly by
decreasing asymptotically towards the route length. However, the short-range nego-
tiation does not come down as fast as the other two. For example, with a host density
of 1.56 hosts per street node the client needs on average 50 time intervals to reach its
destination with the short-range negotiation, but only 33 with mid-range and 30 with
the unconstrained negotiation (see Table 5 for details). Thus the short-range negoti-
ation is significantly less effective, but mid-range and unconstrained negotiation are
nearly not distinguishable in effectivity.

The last question to be investigated concerns the number of messages sent by the
different negotiation ranges. Figure 4 shows the steep increase of messages created
by an unconstrained negotiation range. This range is by far the least efficient, and
this effect is the stronger the higher the host density. For a host density of 1.56 the
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Table 5. Results for a host density of 1.56, with standard deviations and 95% confidence intervals.

trip duration σ ci messages σ ci
cycles % no. %

short range 50 152 20 1.2 77 21 25 1.5
mid range 33 100 13 0.8 369 100 134 8.3
unconstrained 30 91 12 0.8 3986 1078 1651 102.3

unconstrained negotiation range produces on average 3986 messages, the mid-range
strategy 369, and the short-range strategy only 77 (see again Table 5 for details).

Figure 4. The number of messages exchanged with the three negotiation ranges for different host densities.

For the unconstrained negotiation range, the number of broadcasted messages will
increase continuously with the density of hosts. Since for the densities beyond the
right end of Figure 4 on average all hosts are connected, broadcasts of requests in-
crease linearly with the number of hosts. Broadcasts of offers do increase much less
significantly since far hosts frequently do not contribute to the requested trip. How-
ever, the number of hops of these messages can grow, as of an eventual booking
message from the client.

For the short-range negotiation, the number of broadcasted requests is constantly
1 for each negotiation cycle, since requests are not forwarded. Eventual offers and
bookings are also broadcasted only by the original senders. While numbers of re-
quests are a function of the trip duration, numbers of offers are a function of route
length and host density, and numbers of bookings are a function of the route length
only. Trip duration and host density are negatively correlated, which lets approach
the curve asymptotically a constant.

The mid-range negotiation mixes the two behaviours discussed before. It appears
to be limited in its growth because the communication range is limited. Hence, the
number of broadcasted requests does no longer increase with the total number of
hosts, but only with the number of hosts in the chosen range. Since this set of hosts
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contains on average most of the for the request relevant hosts (compare Figure 3),
the reduction of numbers of messages does not reflect in an increase of the duration
of the trip. Hence, this strategy is efficient.

7 Conclusions

In this paper we demonstrated by simulation that shared-ride trip planning can be ac-
complished by the availability of an ad-hoc mobile geosensor network. Furthermore
we show that this solution is effective and efficient. While it is most effective with
an unconstrained negotiation range, this strategy is inefficient from an energy and
bandwidth standpoint. This strategy is also not feasible: the necessarily short com-
munication windows limit practically the number of hops of messages. In contrast,
the short-range negotiation is the most efficient, but least effective. Compared to the
two, the mid-range negotiation proves the hypothesis: it is effective (e.g., for 1.56
hosts per node 10% longer trips than with unconstrained negotiations (on average),
but 66% shorter trips than with short-range negotiations) and it is efficient (e.g., for
1.56 hosts per node 5 times more messages than with short-range, but 9% of the
messages with unconstrained negotiations—and this number is steeply decreasing
with an increase of host density). It can be expected that the trends reflected in these
numbers hold for different street network forms and mid-range thresholds.

The results relate to a specific wayfinding strategy, travelling along the shortest
distance route. It can be expected that for other wayfinding strategies the results will
be in principle the same since the relationship between the nearness of the agents and
their relevance for each other holds universally.

In future work we will investigate the following open questions.

(i) In this paper, we have chosen an inflexible wayfinding strategy. Strictly following
the shortest distance route might result in longer trip durations in many contexts.
In real transportation networks the shortest distance route is not necessarily the
fastest, e.g., when the network is hierarchic. One extension of this paper is inves-
tigating different wayfinding strategies with flexible route choice.

(ii) In this paper, we have only optimized travel time. Other optimization functions
can be chosen, and especially multiple-criteria optimization has real applications
in multi-modal transportation. For example, our simulation could be extended to
minimize the number of transfers during a trip, or to find an adjusted optimum
between travel duration and travel convenience.

(iii) In this paper, we assumed an equal probability distribution for random book-
ing, which is a sufficient first approximation. But a consequence of conservative
booking is an unequal booking distribution over the time intervals ahead. Thus,
with conservative booking there are less hosts available for mid-range planning.
Clients will find this counterproductive, and might restrict themselves to less
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greedy booking strategies for a common benefit. Investigating rigidly the con-
sequences of conservative booking, and comparing it with the effects of other
booking strategies, is an interesting question for the future.

(iv) One assumption in our simulation is equal behaviour of all transportation hosts.
In real urban traffic this might be a sufficient first approximation. However, inte-
grating different modes of transportation, especially different speeds and different
pricing, requires a relaxation of this condition. A related extension of our simu-
lation would allow client agents to walk, at least single segments, to bridge small
gaps in the transportation network.

(v) In this paper we consequently considered updating as an active search process
of the client agents. A central service would prefer event-triggered messaging,
reducing the planning tasks to times when needed. This passive process can be
investigated for geosensor networks as well. Controlling the revision of trip plans
by events (Worboys and Hornsby 2004) means that client agents act only when
they approach a gap in their bookings, or when a new host appears in their field
of observation. And hosts act if they enter the traffic, or if they find bookings
dissolved.

This paper focused on route planning with local, incomplete knowledge. Other
issues of an ad-hoc shared-ride system, like social, economic, or privacy issues, still
need to be investigated.
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