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ABSTRACT 
Technological advances have created an unprecedented 
availability of inexpensive sensors capable of streaming 
environmental data in real-time. Data stream engines (DSE) with 
tuple processing rates of around 500k tuples/s have demonstrated 
their ability to both keep up with large numbers of spatio-temporal 
data streams, and execute stream window queries over them 
efficiently. Typically, geographically distributed sensors take 
samples asynchronously; however, when approximating the 
reality of a continuous phenomenon – such as the radiation field 
over an urban region- the objective is to integrate their values 
correctly over space as well as over time. This paper presents an 
approach to extend DSEs with support enabling sliding window 
queries over dynamic continuous phenomena, which return both 
spatio-temporal snapshot and movies as window query results. 
We introduce a novel grid-pane index as a main memory index 
structure shared between multi-queries over a phenomenon and an 
adaptive, data driven kNN algorithm for efficiently approximating 
cells based on available stream data samples. AkNN implements a 
spatio-temporal inverse distance weighting interpolation (IDW) 
method that integrates time with space via an anisotropic ratio. 
Further, we introduce the shell list template that allows quick 
calculation of NN cells by distance in a  space-time (ST) cuboid. 
We performed extensive performance evaluations using the 
Fukushima nuclear event in March 2011 as a test data set. 

Categories and Subject Descriptors 
H.2.8 [Database Systems]: Database Applications, spatial 
databases, GIS, data streaming. 

General Terms 
Algorithms, Design, Experimentation, Management, 
Measurement, Performance. 

Keywords 
Scalable spatio-temporal interpolation, data streams system, 
sensor data streams, continuous phenomena, stream queries, main 
memory spatio-temporal index, panes. 

1. INTRODUCTION 
Real-time stream data acquisition via sensors has been widely 
used in many applications such as intrusion monitoring, 
manufacturing, disaster response, radioactive accidents, air quality 
control, pollen monitoring, and in other types of sensor networks 
[7, 29]. Sensors directly connected to the Internet enable us to 

collect high frequency updates of potentially thousands of sensors 
deployed over a geographic area such as a large metropolitan 
region [23]. Today’s commercial data stream engines (DSE) with 
tuple processing rates of up to 500k tuples/s have demonstrated 
their capacity to process these types of spatio-temporal data 
streams efficiently and provide near real-time responses and 
continuous query answers [6, 19, 31, 32]. Although DSEs have 
been successfully used for mobile object monitoring in traffic 
applications as well as RFID tracking [21, 22, 28], support 
remains limited for phenomena that are continuous in space and 
time such as fields of pollen, radiation or air pollution [4, 12]. 
Continuous environmental phenomena like gas distribution, 
rainfall or the dispersion of radioactive particles are seamlessly 
distributed over a geographic region and gradually change over 
space and time. Although, there are no ‘hard’ boundaries (such as 
those around cars or streets), for many of these phenomena 
boundaries of high-threshold subregions can be of interest. 
Conceptually, the phenomenon’s change over space and time can 
be thought of as a ‘movie’ showing the value distribution 
smoothly distributed over space changing at very fine-grained 
temporal steps. Capturing this dynamic aspect was not possible in 
the past, but given inexpensive, wireless enabled sensors sampling 
in high spatial density and rapid temporal frequency, it is possible 
today. One can now easily envision scenarios such as monitoring 
the pollen distribution in Boston or radiation depositions in Japan 
or Germany [4, 11]. 
Our contributions: In this paper, our objective is to investigate 
DSE support for monitoring phenomena that are continuous both 
over space and time with massive amounts of live sensor streams. 
We present a novel DSE approach for monitoring dynamic 
continuous phenomena based on a scalable stream operator 
implementation that enables snapshot and movie window query 
results. We introduce a spatio-temporal inverse distance 
weighting (st-IDW) method that includes time as a third 
dimension and accounts for the difference between spatial and 
temporal distance by using an anisotropic ratio. Our contributions 
also include an adaptive kNN stream based algorithm for st-IDW 
to efficiently approximate grid cells based on available stream 
samples. We address the typically resource consuming 
identification of nearest neighbor (NN) tuples in both space and 
time within the kNN algorithm with two contributions: a novel 
space-time grid-pane index with isotropic time cells and the shell 
list template. The grid-pane index consists of subpanes as the 
smallest temporal grid dimension units making it possible to 
search the index both by a unified Euclidean distance metric as 
well as to discard outdated tuples based on query time. The shell 
list template allows for quick calculation of NN cells by distance 
to a cell in a cuboid. We performed numerous performance tests 
using data from the Fukushima nuclear event in March 2011 as a 
test set. The results show that spatio-temporal snapshot window 
queries with roughly 250K sensors updating with varying 
frequencies per query window can be computed in less than 4 
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seconds on a laptop. Movie window queries delivering 16 frames 
per query window can be computed in about 10 seconds for the 
same number of sensors.  
The remainder of this paper is structured as follows: Section 2 
comprises a short introduction into DSEs. In Section 3, we state 
the problem. In Section 4 and 5, we present our data stream 
framework. Section 6 contains the performance tests and results. 
Section 7 discusses the related work, and Section 8 summarizes 
the results and discusses future work. 
 

2. A SHORT PRIMER ON DSEs 
In this section, we present a short background of current 
technology in data stream engines (DSEs) and assess the 
requirements needed to support continuous phenomena 
monitoring.  

2.1 Data stream engines 
With the availability of ever smaller and less expensive sensors, 
pervasive environmental sampling at high frequencies is possible 
today. Air quality sensors are being attached to mass transit 
vehicles, used in citizen science efforts to monitor pollen or 
radiation [23, 27], and even homeland security applications are 
appearing. Real-world update rates depend on the application, but 
one can imagine that for a time-critical radiation or chemical 
plume monitoring scenario, an update rate of 1 update/minute or 
faster in a dense geographic deployment would be desirable. A 
cloud-edge architecture [8] with sensors on the ‘edge’ of the 
internet streaming samples via the cloud to a centralized data 
processing system can be used to reduce latency and improve 
robustness.  
A data stream engine is a software system designed to manage 
continuous data streams as found in real-time financial, 
emergency or intrusion monitoring applications. Data streams are 
considered continuous because the amount of data arriving at a 
particular time is unbounded and cannot be pre-determined. 
Sensors add timestamps to the samples before sending them, and 

the DSEs timestamps tuples upon arrival (with a 2nd timestamp). 
A generic sensor data packet can be thought of as a tuple or a 
record which contains attributes like <sensor id, sensor type, 
timestamp, location, value measured>. In traditional database 
management systems (DBMS), queries are evaluated by pulling 
data from disk, in DSEs this is reversed: here, queries are 
evaluated over data pushed from the stream sources. Moreover, 
traditional queries are executed one time, whereas queries running 
in DSE are continuously re-evaluated and often run indefinitely. 
This reversal of roles for data and query means that new strategies 
have to be developed to handle new challenges: 

Continuous Query Model: Traditional DBMS queries operate 
on a finite data set (i.e. a relation) and assume set-based data, i.e. 
they do not have to consider the order of data. However, 
continuous queries operate indefinitely on an unbounded data set 
and take the temporal order of arriving data into consideration 
using an additional specification for query evaluation intervals, 
also called query windows [5]. 

Low Latency: Data from streams are generally critical for 
answering real-time queries, but their significance is often short-
lived.  

Variable data rate: The data arrival rate for a stream-based 
application could vary from a few hundred to millions of updates 
per second. Additionally, the arrival rate can be unpredictable 
given fluctuations in the sensor update rates or transmission 
delays. Irrespective of the bottlenecks, DSE query processing 
must be robust and aimed towards high throughput. 

2.2 Window stream queries 
CQL [5] is a quasi-standard stream query language derived 

from and compatible with Structured Query Language (SQL); 
CQL is supported today by several commercial DSEs [6, 19, 31, 
32]. In CQL, both the syntax and semantics of defining a SQL 
query remain intact, but new operators are specified to support 
stream processing like STREAM, NOW, JOIN, SLIDE, 
WINDOW, UNBOUNDED, etc. A stream is an unbounded 
sequence of time-stamped tuples. A relation is a bag of tuples at a 

Figure 1. Overview. 



particular instance in time and conceptually equivalent to a 
traditional table; hence, this supports a mapping to traditional 
query operators. A window represents a stream interval with a 
finite set of tuples over which a query is executed. A slide is used 
to define an incremental unit over which an entire window 
‘moves’ before it is re-evaluated. For example, a window with a 
range of 5 minutes and a slide of 1 minute will re-execute every 
minute, taking data from the last 5 minutes into account. 
In the context of monitoring a continuous phenomenon, sensors 
pushing data to the DSE provide spatio-temporal point samples of 
a dynamic field. However, we are more interested in queries over 
the phenomenon itself instead of over individual or groups of 
sensor streams. Achieving a smooth representation of a 
continuous phenomenon over a query window requires the use of 
the set of available samples to approximate and fill in the non-
sampled points in space and time. This is achieved through spatio-
temporal interpolation such as the spatio-temporal versions of 
Kriging, Inverse distance weighting (IDW) or others [20]; again 
the specific choice of methods depends on the application needs. 
For example, the stream query  

SELECT RASTER(sensor.val, sensor.loc, st-idw) AS radiation_distr  
FROM sensors WINDOW 5min SLIDE 1min  
WHERE sensor_type=radiation AND INSIDE(@Japan, sensor.loc); 

specifies a stream query that produces a smooth distribution of the 
radiation over Japan using spatio-temporal IDW to approximate 
the missing values, and creates a raster representation as output 
per window. The raster is created every 1 minute, taking collected 
samples from the last 5 minutes into account.  

2.3 DSE support for spatio-temporal window 
queries 
Under a non-blocking stream processing paradigm, a query 
consists of stream operators arranged as a directed acyclic graph 
(DAG). The operators are connected via queues, and each stream 
operator has an in-memory state consisting of any tuples 
necessary to perform its operation. Note, that for high throughput 
all data are stored in main memory only, and this includes index 
structures. Tuples and indices are often shared between operators. 
Operators work in a pipelined, non-blocking fashion, i.e., an 
operator pulls tuples from its input queue(s), performs an 
operation on the relevant set of tuples for the window, and creates 
an output tuple available for the next operator. All operators work 
at the same time and with techniques like cloning operators the 
performance can be scaled up without change to the operator 
graph itself [24].  
After an active research period in DSE technology, today several 
commercial DSEs such as Oracle CQL [26, 32], Microsoft 
Streaminsight [1, 2], IBM Infosphere [6], and Streambase [31] are 
available. In most commercial systems, the stream option is an 
extension of the relational DBMS product, and libraries that offer 
spatial support are available for programming stream queries, too. 
However, the related work shows that since the spatial library 
functionality is not implemented as non-blocking stream operators 
today and instead adheres to the traditional disk-based processing 
paradigm, using such libraries for stream queries creates a 
significant performance bottleneck [1, 14, 19]. Thus, the spatial 
libraries are not readily usable in real-time applications today.  

2.4 Problem statement 
To the best of our knowledge, today DSE support for monitoring 
continuous phenomena in space and time based on sensor data 
streams is limited, both in academic and commercial systems [3, 
25]. Such support needs to be implemented using a pipelined 
stream operator approach to provide the necessary spatio-temporal 
functionality for monitoring and analyzing continuous 

phenomena. This requires a customizable stream operator 
template so that different streams can be plugged in and operators 
can be exchanged for customized ones (e.g. varying the 
interpolation method, or index structures). Overall, the following 
constraints have to be considered: first, main memory is a limited 
resource as all incoming data and query operators have to share 
the available memory. Second, stream query operators need to 
scale to potentially very high data rates and new algorithms need 
to lend themselves to automatic optimization such as cloning of 
stream operators. Third, the stream operators need to be easily 
customizable for different types of spatio-temporal queries over 
continuous phenomena as we show in the following sections. 

3. INCREMENTAL SPATIO-TEMPORAL 
WINDOW QUERY EVALUATION 
In this section, we discuss the problem of representing window 
query results over continuous phenomena, introduce our stream-
based approach to compute such phenomena, and introduce 
several different types of window queries over continuous 
phenomena. 

3.1 Representing continuous phenomena with 
stream queries 
Our objective is to investigate DSE support for monitoring 
phenomena that are continuous over space and time and to enable 
the monitoring of their dynamic changes based on very large 
numbers of live stationary or mobile sensor streams. We will call 
this type of phenomenon a dynamic phenomenon in the remainder 
of the paper. Conceptually, a dynamic phenomenon is represented 
in temporal ‘portions’ defined by a query window over the input 
sensor data streams. Two important questions arise: firstly, how to 
represent the ‘reality’ of the continuous phenomenon correctly 
over time and space within the query window, and secondly, how 
to deal with asynchronous updates of very large numbers of 
sensors. 
The problem of representing snapshots of a continuous 
phenomenon over space is well established in traditional 
geographic information systems (GIS). In our previous work [25], 
we investigated strategies for stream queries over dynamic 
phenomena with synchronous sensor updates at time ti for all 
sensors during a query window. This reduces the complexity of 
representing a dynamic phenomenon correctly since we can create 
a spatial snapshot representation at ti. We implemented a 
parallelizable stream operator graph that performs a purely spatial 
interpolation of missing grid points based on existing updates. 
However, as this assumption of synchronous updates is relaxed 
and made more realistic (the focus of this paper), the temporal 
variation of samples over space must be considered when 
representing the phenomenon.  
In this paper, we assume the following sensor sampling 
characteristics: individual sensors send samples that have varying 
update frequencies (varying within a stream and between 
streams), and sensors do not update synchronously with other 
sensors. Device locations may also change between updates.  

3.2 Approximating phenomena using a 
spatial-temporal interpolation center 
We conceptualize the available samples within a query window as 
a spatio-temporal point cloud over the observation region and 
time window1 (see Figure 2). However, a smooth distribution over 
space and time representing the dynamic phenomenon with 

                                                                    
1 In this paper, we do not address the potential of sensing noise. 



missing values filled in by approximation is the desired stream 
query output.  
In recent years, the problem of spatio-temporal interpolation (ST 
interpolation) has received much attention, foremost in the area of 
adding support for moving objects in DBMS and DSE as well as 
in spatio-temporal databases. For this problem, ST interpolation 
focuses on approximating the spatial trajectory of a moving object 
over time and interpolating missing information about the 
trajectory to determine the object’s path as closely as possible.  
ST interpolation methods for continuous phenomena are less well 
established in the spatial database and spatial information science 
communities. Such methods provide the estimation of unknown 
values at non-sampled space-time locations [16, 18]. In traditional 
GIS, ST interpolation methods treat space and time separately. 
The work in [16] suggests that for certain applications integrating 
space and time simultaneously yields better interpolation results 
compared to traditional approaches. With a similar motivation in 
our paper, we adopt the latter strategy.  
A query window is defined by a temporal interval [tS; tE] with tS 
as start timestamp and tE as the end timestamp. We can reasonably 
expect window sizes to vary from seconds to hours. Longer 
windows are possible but might not require a DSE. All samples 
available during the window are input candidates for the ST 
interpolation in order to approximate the continuous phenomenon. 
In our approach, we first make a simplification, and introduce the 
concept of an interpolation center tCenter. The interpolation center 
is a chosen timestamp for the query window, and it is calculated 
as a relative offset from the start of the window, thus, tS≤ tCenter≤ 
tE. It is used to create an approximation of the dynamic 
phenomenon’s state at that instant in time. Samples surrounding 
the interpolation center in space and time serve as input for the 
spatio-temporal interpolation method to generate a representation 
of the phenomenon’s predicted state at that time instant resulting 
in a 2D representation. The concrete output representation 
depends on the chosen ST interpolation method, i.e. the dynamic 
phenomenon could be represented as a raster, contour lines, 
Voronoi diagram or other alternatives. In the scope of this paper, 
we use a raster representation produced by an extended spatio-
temporal inverse distance weighting algorithm (st-IDW), to be  
introduced later. 
Naturally, samples farther in distance and time from the 
interpolation center have less impact than samples collected 
temporally closer. In a practical sense, we still achieve a spatial 
snapshot interpolation but weight samples based on their spatial 
proximity and temporal distance. We discuss how we use the 
interpolation center for window approximation in the next section.  

3.3 Types of spatio-temporal window queries 
over continuous phenomena 
Using the interpolation center approach, we distinguish the 
following window query types over continuous phenomenon: 
spatio-temporal snapshot window queries and spatio-temporal 
movie window queries.  

3.3.1 Spatio-temporal snapshot window queries 
For the snapshot window query type, the dynamic phenomenon is 
represented as a raster-based snapshot capturing the estimated 
state of the phenomenon at the time specified by the interpolation 
center tCenter based on all the samples available during the 
window.  
For real-time monitoring applications users are often most 
interested in the latest state of a phenomenon. Hence, the 
interpolation center tCenter is defined at the query window end tE. 
Since any samples taken towards the end of the window have 
more impact on the predicted snapshot, placing the interpolation 

center at the end of the window query has a time decaying effect 
of earlier samples collected at the beginning of the window.  
For applications that are focused on monitoring and potentially 
archiving dynamic phenomena, choosing an interpolation center 
in the middle of the window, i.e. (tS + tE)/2, provides the best 
‘summary’ of the phenomenon’s changes during the window, 
considering both samples before and after tCenter (until the end of 
the window) for interpolation. While the ‘end of window’ and the 
‘middle of window’ are the two most likely interpolation centers, 
there are no restrictions on when to place tCenter within the query 
window.  
3.3.2 Spatio-temporal movie window queries 
The snapshot window query produces a single raster per window, 
which also means that detailed information on the phenomenon’s 
temporal variation within the window is lost. An intuitive way to 
capture this variation is a ‘movie’ of the phenomenon, i.e. a series 
of snapshots or ‘frames’ within a window.  
Each ‘frame’ of the movie is a spatial raster produced using ST 
interpolation. However, the input for each interpolation is smaller, 
i.e. a fraction of the window size. For example, a five minute 
window can be represented at different ‘frame’ rates such as one 
frame every 30 seconds (10 frames overall), or one every minute 
(5 frames overall). Each frame can be computed using time 
decaying interpolation centers at the end or middle of the window 
subinterval, depending on the application needs.  
One serious problem for the movie representation can be a lack of 
available samples for short, non-overlapping subintervals. In this 
case, the approximation of each ‘frame’ will be coarse. This 
problem is discussed in the performance evaluation section.  
 

 
 

Figure 2. Input sensor samples over space and time 

3.4 Spatio-temporal IDW 
For this paper, we chose inverse distance weighting (IDW) [30] as 
the interpolation method because of its linear scalability with the 
size of the prediction grid and the number of sample points. While 
traditional spatial IDW does not consider time, we extended the 
method and added time as another spatial distance dimension. To 
include time correctly [16], we use an anisotropy ratio between 
time units and spatial units to account for the difference temporal 
‘distance’ versus spatial ‘distance’ so that they can both ultimately 
be treated in the same way. The temporal difference (‘distance’) 
between the observation time point tt of a sensor tuple and the 
interpolation center tCenter is multiplied by the inverse of the 
anisotropy ratio a to convert the temporal ‘distance’ to a ‘spatial’ 
distance. This yields an overall 3D distance calculation for each 
cell cellc approximated at tCenter of  

𝑑(𝑐𝑒𝑙𝑙! , 𝑡𝑢𝑝𝑙𝑒!) = 𝑥! − 𝑥! ! + 𝑦! − 𝑦! ! +
𝑡!"#$"% − 𝑡!

𝑎

!
 

Parameters to st-IDW additionally include a power factor, a 
varying spatial search radius around a cell, and in some cases a 
threshold level of k sample points to use to interpolate each grid 
cell. The anisotropy ratio is currently determined experimentally.  



3.5 Discussion 
For each cell in the output grid, st-IDW requires fast access to all 
relevant tuples that are close to the cell in space and time. Thus, 
incoming tuples must be indexed in three dimensions. If a single 
grid index is to be used for all query windows (and queries), 
expired tuples will need to be removed from the index and new 
ones added continuously. The identification of old tuples from a 
window is a potentially costly operation, so the index structure 
should be designed to be efficient to remove old data and add new 
data. Additionally, the index needs to be stored solely in main 
memory to maintain high throughput.  

4. SPATIO-TEMPORAL GRID-PANES 
4.1 Shared execution of spatio-temporal 
window queries 
In a DSE, incoming streams are shared between multiple queries 
over the same input streams. Although each stream query might 
run separately (i.e. queries do not share operators), auxiliary 
structures for operators that organize/index portions of the stream 
are shared between queries [22].  
Our DSE approach for supporting the monitoring of dynamic 
phenomena consists of two components: first, a shared spatio-
temporal main memory-based index structure that organizes 
incoming tuples in space and time to prepare them for fast 
identification during spatio-temporal interpolation, and second, a 
scalable, adaptive, main memory-based stream operator to predict 
dynamic phenomena using spatio-temporal inverse distance 
weighting (st-IDW). Our design considerations and the novel 
components are presented in the remainder of this section.  

 
Figure 3. Stream operator graph for ST-interpolation 

4.2 Incremental evaluation of spatio-temporal 
windows 
Remember the example from Section 2.2 

SELECT RASTER(sensor.val, sensor.loc, st-idw) AS radiation_distr  
FROM sensors WINDOW 5min SLIDE 1min  
WHERE sensor_type=radiation AND INSIDE(@Japan, sensor.loc); 

This stream query creates a raster using st-IDW considering all 
incoming sensor updates from the last 5 minutes (the location of 
interpolation center is by default at the window end). At time t0 
the operator waits until all samples in the interval [t0; t5] are 
received; then, it resumes to create the output raster. The operator 
then ‘slides’ over the data by one minute, and produces a new 
raster using the tuples with timestamps in the interval [t1; t6]. 
Essentially, the operator discards all tuples with timestamps in the 
interval [t0; t1] in its operator state and adds the tuples that arrived 
between [t5; t6] to its state. This is called incremental query 
window evaluation. It is crucial to identify which tuples are still 
valid, which tuples are newly added, and which are to be 

discarded tuples quickly to achieve fast execution of the next 
interpolation step.  
In [15] the initial idea of window ‘panes’ was introduced; ‘panes’  
support the grouping of tuples based on time ‘groups’ which can 
correspond to the slide of windows. All the panes that make up 
the slide contain all tuples relevant for the increment of a slide. 
We extended this concept in our approach, combineing and 
adjusting it with a spatial grid search index needed to identify 
tuples based on location and time. 
In the following, we describe the proposed stream operator 
algorithm, depicted in Figure 3 (upper box). 

4.3 Operator I (Indexing): Shared spatio-
temporal grid-pane index 
A space-time grid index is created to group the sensor tuples for a 
window in both space and time. Once a window slides for the next 
interpolation, invalid tuples can be purged from the space-time 
grid by eliminating one ‘slice’ over time, and new cells can be 
added.  
Panes [15] can be integrated into a grid index by simply adding 
another dimension to the grid. This can be achieved in one of 
three ways: the grid becomes a) a 3D array of ST grid cells, or b) 
a 1D array of panes and each pane contains a 2D grid, or c) a 2D 
grid in which each grid cell contains an array of panes. In our 
approach we chose the first option. The index can be visualized as 
a rectangular cuboid (see bottom of Figure 3) in which a (x, y) 
grid column slides over the temporal axis. In a single stream query 
setting, the spatial size of the grid cell is equal to the size of a cell 
of the output grid (e.g. 512 x 512 cells over the observation 
region). For a multi-query environment this spatial aspect of the 
grid size is variable. Similarly, the length of a cell along the 
temporal axis defines a temporal ‘resolution’ and depends on the 
query itself (i.e. range and slide). In our approach, the length of a 
cell along the temporal axis is equal to one subpane (more details 
on subpanes are described in 5.3).  
To eliminate the need for creating new panes and removing old 
panes, a circular buffer is used in the space-time grid index that 
allows panes to be reused. Since a window contains a fixed 
number of panes it is advantageous to be able to reuse the grid 
cells in each pane. When a window slides, and the query is 
reevaluated, the outdated cells in the grid panes index are cleared 
directly. 
The first sub-operator of the dynamic phenomenon stream 
operator (see Figure 3) scans the incoming tuples from the input 
adaptor and inserts pointers to the tuples in the grid-pane index 
based on location and the original sensing timestamp. 
 

 
Figure 4. Shell list template: Nearest neighbors by cell 

distance in 2D 

4.4 Operator II (finding NN cells): Using the 
spatio-temporal shell template 
In our previous work [25], we determined that the ‘Virtual List’ 
(VL) approach has the best performance when performing spatial 



interpolation in a stream-based setting. To interpolate the value of 
a grid cell, data within a specified spatial and temporal distance to 
the cell are used to calculate an approximate value. In the Virtual 
List approach, these tuples are determined by traversing the grid 
index, and the input tuples are never materialized nor are 
references copied. Adapting VL to the st-IDW method, the VL 
now needs to traverse the cells based on distance in the grid index 
cuboid.  

To find cells in the order of their distance from a central cell (the 
cell for which the value needs to be interpolated), we introduce a 
cylinder shaped Shell List template. The Shell List is constructed 
by generating all combinations of coordinates that fall within the 
search radius and time window and sorting the list based on the 
cells’ distance to the center of the cell being interpolated. The 
Shell List is a two-leveled hierarchical list of lists describing 
successive concentric ‘shells’ of successive distances from a 
central cell.  Each sub-list collects the relative array addresses of 
the cells that are equidistant to the center; the top-level list orders 
the sub-lists by their distance from the center.  This list is 
structured by including only cells within the spatial radius and the 
query time window range. This constrains the shells to expand 
only to the shape of a cylinder (see Figure 3 for the cylinder shape 
of the Shell List and Figure 4 for a 2D-based Shell List).  
 At this point the second level hierarchy is built by collecting 
coordinates, which are at the same distance (i.e. they are 
sequential in the list because of the sorting).  The time complexity 
for this algorithm is O(r2tlog(rt)) where r is the limiting radius of 
the search or equivalently O(nlog(n)) where n is the number of 
cells and t is the length of the time window. The Shell List has the 
potential to become quite large, but a single list suffices for each 
cell of the entire grid index since the list consists of relative 
addresses (thus, Shell List template). For example, for a central 
grid cell (i.e. a cell to be interpolated), its x and y coordinates and 
the interpolation center are combined with each set of (x, y, t) 
relative addresses in the Shell List to determine the actual cell 
addresses in the grid where the next tuples to be considered are 
stored. 
The VL algorithm uses the Shell List template to determine for 
each cell the relevant input cells to be checked for tuples to be 
used for interpolation. Overall, the data used to approximate the 
value of a grid cell can be visualized as a cylinder surrounding 
that grid cell with height equal to the window range and a radius 
equal to the spatial search radius. All tuples from cells having cell 
centers within this cylinder are used to interpolate the output grid 
cell.  

4.5 Operator III (Interpolate): ST inverse 
distance weighting 
Figure 3 depicts a set of grid cell interpolators accessing the 
relevant cells and their tuples determining their addresses based 
on the Shell List template. The operators are independent of each 
other, yet they share read access to the same grid-pane index. The 

operators have the potential for parallel execution since their 
functionality is the most time-consuming in the overall 
interpolation. Once a grid cell has determined all the relevant 
input tuples by space and time, it generates the value based on the 
function mentioned in Section 3.4. 
The Grid Union operator, which is a consumer operator of all the 
grid cell interpolators, assembles the grid for a particular window, 
and creates a raster as a window-based output. The raster can be 
visualized, stored or used as input for further stream queries. 

4.6 Discussion 
The stream operator graph supports any choice of interpolation 
centers; a common interpolation center is at the end of the 
window as depicted in Figure 5. The mid-window interpolation 
center is located in the center of the depicted cylinder (see Figure 
3), and the search expands in both direction of the temporal 
cylinder. The VL algorithm performs well if the search radius r is 
small with a given window range, but as the radius increases, the 
number of grid cells that need to be accessed and the number of 
tuples to be processed increases significantly. In cases when 
samples are sparse, it might be necessary to require a large preset 
spatial search radius until sufficient sample data are found, and 
even simple checking of cells for tuples is expensive. If, however, 
tuples are abundant, a small search radius is sufficient. 

5. ADAPTING TO DATA DISTRIBUTION 
Based on the previous discussion a VL operator using a preset 
search radius can become inefficient for sparse and skewed data 
sets. In this section, we introduce an improved algorithm that 
adapts to the available data distribution automatically.  

5.1 Adaptive kNN Algorithm 
Since st-IDW assigns more weight to samples closer in space and 
time than to those farther away, samples in greater distance 
contribute statistically less information about the value of the cell 
being predicted. At some point, any further samples can be 
disregarded without affecting the error of the interpolation beyond 
some tolerance.  We exploit this and propose the Adaptive kNN (k 
Nearest Neighbor) approach to st-IDW interpolation. As described 
above, for each cell in the output raster, tuples from successively 
more distant cells (distant in both time and space) are used to 
determine the predicted value, but when a specified number of 
tuples have been processed, i.e. the closest k tuples, the operator 
terminates interpolation for this cell. 

5.2 Isotropic grid panes 
Again, the Shell List template is used to determine the NN cells. 
The Shell List template is isotropic, i.e. is it treats all dimensions 
equally with respect to calculating distance. Here, the width of a 
cell in the x spatial dimension is the same as the width in the y 
spatial dimension and is the same as in the time dimension as 
well.  Each of the dimensions participates equally in the Euclidean 
calculation. However, this isotropic view of time does not 
necessarily conform to the layout of the underlying three 

Figure 5: Subpanes 



dimensional grid structure: seconds are not equivalent to meters, 
and even more relevant, panes determined by the window query 
do not have an equivalent weight when calculating the distance to 
a grid cell to be approximated. While the x and y spatial 
dimensions are assumed to be isotropic (distance along one is 
equivalent to distance along another), time is related to spatial 
distance through use of an anisotropic ratio (in the distance 
equation in 3.2). The anisotropic ratio depends on the dynamic 
behavior of the phenomenon; we can adjust the weight of the 
temporal units based on the anisotropic ratio. For example, 
representing a relatively stationary phenomenon over time we 
choose a ‘coarser’ cell width along the temporal dimension (e.g. 1 
hour instead of 1 minute) capturing a ‘slow change’ over time. On 
the other hand, with a fast changing phenomenon we select a 
‘fine’ temporal resolution to capture the change in more detail. 
The anisotropic ratio is specified in time units per distance units. 
Since the Shell List is isotropic, we need to adjust the space-time 
index correctly for the Shell List to find the kNN cells.   

5.3 Subpanes 
In window queries, the basic time ‘unit’ is the window interval of 
the continuous query; additionally, a query window can have an 
incremental slide. In our framework, the slide is represented by 
the (time) pane, i.e. the organizational time unit used to add and 
discard tuples. However, since time and space have a different 
impact on the interpolation, the ‘alignment’ of both is achieved by 
the scaling factor of the anisotropy ratio.  Thus, per window, we 
introduce two types of panes: a) the original pane that relates to 
the slide and the discarding of outdated tuples, and b) an ‘aligned’ 
time unit (pane) that corresponds to the Euclidian distance (further 
called the isotropic time cell). In order to align both the original 
pane and the isotropic time cell, we introduce subpanes (see 
Figure 5), which are the basic grid cell time unit. Subpanes are 
the smallest units to hold data that can be mapped in multiples to 
both panes as well as to isotropic time cells. In order to determine 
the relevant cells for adding and discarding data as well for 
finding kNN cells, a coordinate transformation must exist between 
isotropic time cells and subpanes as well as between (time based) 
panes and subpanes. For example, if the interpolation center is 
defined at the end of window with a range of 16 time units, the 
Shell List determines the search for tuples starting with the center 
of isotropic time cell 0, and expands its search radius to the 
surrounding isotropic time cells (see Figure 5). A single isotropic 
time cell corresponds to a multiple of subpanes (here, five 
subpanes). On the other hand, once the window slides, data are 
discarded in units of a time pane, which also correspond to 
multiples of subpanes (here, four subpanes).  
 

6. PERFORMANCE EVALUATION 
6.1 Experimental Setup 
Since sensor data streams in high spatial and temporal density are 
not available (yet) for the system we envision, we simulated 
mobile sensors along a street network of varying density in two 
geographically different study regions: Cambridge, MA, with a 
dense road network and a region of Japan surrounding the 2011 
Fukushima nuclear incident. 

6.1.1 Data sets 
To generate high-density data streams, a simulation of moving 
objects sampling the phenomenon in their environment and 
creating sensor streams was implemented in NetLogo. The 
movement of sensors is constrained to links in a street network, in 
our test cases the networks are a large region of Japan and a small, 
but densely sampled region of the Cambridge and Boston area. 
The phenomenon we considered represents the estimated radiation 
deposition levels in Japan after the Fukushima Daiichi nuclear 
disaster in March 2011. The predicted radiation levels were 
calculated in R using data from ZAMG [33] and SPEEDI [9].  
The simulation iterates over a sequence of snapshots of the event 
between the 4th and 5th day after the disaster in 15-minute 
sampling increments, and a query window is defined as 8h. In a 
realistic system, we would expect each time unit to correspond to 
1 minute or less. The data sets were generated for 1M moving 
sensor nodes. 

6.1.2  Implementation and Runtime Environment 
The proposed strategies were implemented in Java in a limited 
DSE environment, i.e. operators are connected via queues, and 
work in a pipelined fashion, but we do not consider any of the 
other DSE components. The experiments were run on a MacBook 
Pro with a 2.3 GHz Intel Core i7 (Model MacBookPro9.1; a quad 
core processor with eight virtual cores), 8 GB DDR3 memory at 
1600 MHz and Mac OS X 10.8.4 (12E55) (64 bit) and Java 
1.6.0_45 (64 bit). 
 

6.2 Adaptive vs. full ‘search’ of grid cells 
For the following tests, a sliding window with a range of 32 time 
units and a slide of 4 time units was used. Tests were run with ten 
iterations of four consecutive windows over both the Cambridge 
and Japan data sets. The data sets composed of all simulated 
sensor observations have 256K sensors and each of them had a 
probability of 1/32 (3.125%) of updating for a particular time unit 
(i.e. on average each sensor node updates once in the window; we 

Figure 6: a) impact of neighborhood cell radius r b) impact of parameter k   c) impact of temporal sampling frequency 



investigated other update frequencies later in the performance 
section).  The interpolation center is set at the end of the window. 
6.2.1 Impact of neighborhood radius size 
First, we investigated the impact of the neighborhood radius 
selected on runtime for VL (virtual list) and AkNN. We tested 
radii = {0, 1, 2, 4, 8, 16, 32}. For AkNN, we ran tests with k=4. 
The results are depicted in Figure 6a and show that for all 
configurations there is an (expected) increase in runtime as the 
search radius is increased.  
For VL, the runtime in the Cambridge and Japanese data sets are 
very similar (as expected) since VL uses all data contained within 
all grid cells in the space-time cylinder. VL, however, does not 
scale well once the search radius increases. AkNN scales better 
than VL, but we observed a significant difference in runtime 
between the Cambridge and Japan datasets. When data in grid 
cells are sparse, e.g. sampled only along a street network, the 
AkNN search needs a large search radius to be able to find enough 
data (r~35 cells). For Cambridge with a dense street network, 
AkNN can exploit the higher data density and stop searching once 
k data tuples have been found (r ~ 4-5 cells).  
6.2.2 Impact of parameter k for kNN 
In AkNN, the parameter k can be used to limit the search for 
tuples of a total of kNN tuples. We tested the impact of k = {1, 2, 
4, 8} on runtime for both Cambridge and Japan. A radius of 16 
was used based on results from 6.2.1. VL does not use a 
parameter k, so we generated a straight line for VL for both data 
sets as comparison. For AkNN, runtime increases slightly as k is 
increased in the densely sampled Cambridge data set. However, 
AkNN is slower than VL in Japan for k=8. This is due to the 
introduction of isotropic time cells and subpanes, which results in 
more cells in time (32 vs. 8) to search through.  
6.2.3 Mid-window vs. end-window snapshots 
In this group of tests we investigated different ways of 
interpolating the data within a query window. Our st-IDW 
produces a snapshot of a phenomenon at a particular time instant 
(i.e. interpolation center). We tested the performance difference of 
choosing a specific time at the middle or at the end of the window. 
All tests were run with radius=16 and k=4. In VL, all data for the 
window are found in the same way regardless of the position of 
interpolation center, so very similar runtimes are expected. In 
AkNN, however, using an interpolation center at the end of the 
window results in a faster runtime. This effect comes from the fact 
that data are only to be found in grid cells that intersect the street 
network. Therefore, although we are performing an expanding 
search in both space and time, it is the expansion in space that is 

most likely to result in encountering data. With an interpolation 
center at the end of the window, we search in an expanding 
hemisphere. The search only navigates in one direction, towards 
the beginning of the window, so fewer grid cells need to be 
checked in expansion. This results in AkNN finding data in less 
time with an interpolation center at the end of the window than if 
the interpolation center was in the middle of the window. 
6.2.4 Movie window queries 
We tested several “movies” query results representing the 
evolving change of the phenomenon over the entire window. All 
tests were run with r=16 and k=4. The original query window has 
a length of 32 time units with a slide of 4 time units. We 
investigated dividing a window into a sequence of result ‘frames’ 
and a sensing frequency of 1/16 (6.25%) per tick with sensor 
populations of 64K, 128K, and 256K. The query results were 
presented in movies of 8, 16, or 32 frames/window. The runtime 
represents the total time to generate all frames within the 32 time 
unit window. As we can see (Figure 7 b and c), generating a 
‘movie’ representation over the Cambridge data set with 8 frames 
over 32 time units using AkNN required approximately 8 sec. A 
movie with 32 frames and about 500K sensors observations takes 
about 35 seconds. These results do not include any parallelization 
of the grid cells interpolator.  

6.3 Varying temporal sampling 
The final tests investigate changes in the number of sensors 
sampling at a particular time. We tested fixed sampling rates 
where 1/64, 1/16, and 1/4 (1.56%, 6.25%, and 25%) of the sensors 
updating at each time unit. We also tested dynamic sampling in 
which the percentage of sensors sampling changed at each time 
unit. To allow for reproducibility among runs, a static list of 
random probabilities was generated with values between 1/64 and 
1/4 and with a mean of approximately 1/16. VL showed that an 
increase in sampling rate and number of sensors leads to increased 
runtime. In AkNN, however, the opposite behavior was observed. 
Here, an increase in the number of observations in a window, 
either due to a higher sample rate or an increase in the number of 
sensors, resulted in a decrease in the runtime (more samples, short 
search for k).  
 

6.4 Summary 
Figure 8 depicts the original estimated radiation deposits over the 
Fukushima region on day 5 after the March 15 2011 nuclear 
incident in the top left corner. The darker regions are radiation 
fallout accumulation, and the dark dots represent moving sensors 

Figure 7: a) position of interpolation center and a movie window query over b) Cambridge and c) Japan 
Figure 5: Impact of neighborhood cell radiu∂s 



on the road network. The remaining figures show approximations 
of the fallout using st-IDW with consideration radius of 10, 20 
and 30 cells around the predicated cell (subfigures are in 
clockwise order). Due to the sparse road network the 
approximation is coarse, but the deposits are clearly identifiable.  
Our performance tests show that snapshot queries using AkNN 
run in under ten seconds per window with a search radius of 16 
cells around a cell to be interpolated, a query window of 32 time 
units, roughly 256K observations, and sparse sampling in a large 
region along a street network (Japan). Not only is it feasible to 
produce a snapshot interpolation representing a window, we have 
also shown that it is possible to produce a sequence of frames 
(movie) representing the continuous change over time of a 
phenomenon within a query window. We found a significant 
difference in performance using an interpolation center at the 
middle of a window compared to the end of the window with the 
latter being more efficient due to searching in an expanding 
hemisphere rather than sphere. Finally, our tests show that new 
approaches are needed to handle sparse and skewed data collected 
along street networks.  

Figure 8. Original radiation deposits in Japan at 108 h (top 
left) and approximation with AkNN, search radius (8, 16, 32) 

(clockwise) 

7. RELATED WORK 
DSEs have been used for handling sensor data streams in space 
and time in several sensor-based application domains, mostly in 
real-time moving object management [21, 22]. However, this type 
of DSE support is concerned with tracking individual objects, and 
answering mobile queries efficiently using a shared spatial index. 
The need for a shared grid-based index is similar to our work; 
however, the purpose of our spatio-temporal pane based index is 
different since it is designed to efficiently identify input tuples for 
ST interpolation. Nile-PDT [3] introduces the MJoin operator to 
detect and monitor events in continuous phenomena; it compares 
n:m sensor data streams searching for similar values and identifies 
regions once streams with similar values are detected. In our 
approach, all sensor data streams are interpolated into a smooth 
spatio-temporal representation. We currently focus on 
representing the entire continuous phenomena, not the events.  
The approach of dividing overlapping sliding windows into equal 
“panes” was first introduced in [15]. The original idea was to 
efficiently evaluate continuous aggregate queries by reducing 
space and computation time. In this paper, we utilize the concept 
of panes to divide the sensor data streams into equal sized ‘slices’ 
based on which we build a 3D grid index. However, we introduce 
two new types of panes, first, the so-called isotropic time cell, 

which aligns the spatial cell dimensions with time cell dimension 
via an anisotropic mapping, and secondly, the unit of subpanes, 
which allows easy mapping between query window panes and 
‘grid panes’. In DBS for moving objects [10], spatio-temporal 
interpolation functions are proposed to estimate the locations at 
any timestamp. Nevertheless, only ST-interpolations for 
individual moving object and trajectories are discussed. Few 
researchers have addressed spatio-temporal interpolation of 
continuous phenomena [18]. In traditional GIS, space and time are 
treated separately in spatio-temporal interpolation. For certain 
applications, integrating space and time simultaneously yields 
better interpolation results compared to the traditional approaches, 
and the need for anisotropic ratio has also been addressed in [16]. 
[16–18] use shape functions based on finite element methods to 
integrate space and time simultaneously. In recent years, real-time 
spatial interpolation has caught the attention of research in other 
areas of geographic information science, e.g. [13] investigates the 
redesign of IDW for parallelization and runs the process using a 
single GPU. However, these approaches are outside of the context 
of DSE for processing streaming sensor data and focus solely on 
spatial interpolation. Our previous work [25] has addressed 
challenges of spatially interpolating sensor update streams in near 
real-time in the DSE framework. This paper focuses on the more 
realistic assumption that sensors update asynchronously over a 
window, and we have presented an approach for highly efficient 
stream window based spatio-temporal interpolation. 

8. CONCLUSIONS AND FUTURE WORK 
Today, the unprecedented availability of inexpensive sensors has 
enabled us to collect massive amounts of asynchronously updating 
environmental data streams in real-time. DSEs have demonstrated 
their capacity to keep up with throughput of up to 500 tuples/s. In 
this paper, we presented a novel approach to extend DSEs to 
support the monitoring of dynamic continuous phenomena and 
enable snapshot and movie window queries. Our contributions 
include an adaptive kNN stream based algorithm for st-IDW to 
efficiently approximate grid cells based on available stream 
samples. We address the resource consuming identification of NN 
tuples in both space and time within st-IDW with two 
contributions: a novel, shared space-time grid-pane index with 
isotropic time cells and the shell list template. The shell list 
template allows quickly calculating NN cells by distance in a ST 
cuboid. The grid-pane index consists of subpanes as the smallest 
temporal grid dimension unit and make it possible to achieve two 
tasks: a) searching the index by a unified Euclidean distance 
metric using the shell list, and b) discarding outdated tuples based 
on query time. We performed extensive performance evaluations 
using the Fukushima nuclear event in March 2011 as test data. 
The results show that spatio-temporal snapshot window queries 
with about 250K sensors updating in high frequency per window 
query can be computed in less than 4 seconds on a laptop. Movie 
window queries with 16 frames per window can be computed in 
about 10 seconds. Future work includes identifying strategies to 
improve ST interpolation of spatially sparse sampling. 
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