Formal Information Modelling for
Standardisation in the Spatial Domain

Stephan Winter
Institute for Geoinformation
Vienna University of Technology
winter@geoinfo.tuwien.ac.at

Silvia Nittel
Data Mining Lab, Computer Science Dept.
University of California, Los Angeles
silvia@cs.ucla.edu

Abstract

This paper presents the results and experiences of applying a formal
tool to writing specifications for software in the spatial domain. We take a
specification from a standards organization to demonstrate the properties
of this approach, and we compare our result with the semi-formal specifi-
cation of the standards organization. The expected advantages — formal
semantics of specified interfaces, total abstraction from implementation,
executable prototype, and extendable algebraic structure — can be veri-
fied. However negative experiences are reported also: pure abstract code
turns out to appear overloaded and difficult to read (by humans). With
this work we contribute to the foundations of standardisation efforts in
the spatial domain, preserving an object oriented modeling approach.

1 Introduction

This paper presents the results and experiences applying a formal tool to writ-
ing specifications for software in the spatial domain. Current state of the art
writing such specifications is utilizing UML (Unified Modelling Language, Booch
et al., 1999; OMG, 2000). UML is not formal in its semantics, and remains to
be descriptive in specifying behavior of methods. This paper takes a published
specification from a standards organization, translates it into a formal specifi-
cation, and compares the two. The selected example is the gridded coverage,
a specification taken from the bookshelf of the OpenGIS Consortium, OGC.
Neither the topic is critical for this paper, nor is the organization, because our
interest lies in design methodologies for standards. Standards organizations like
the International Standards Organization ISO or OGC apply conceptually the
same methodology in designing spatial standards (Berre et al., 2000).



1.1 What is an abstract specification?

Software specifications are abstract in a sense that they describe a domain —
in the scope of the paper: the geographic domain, especially fields. They are
called abstract specifications as long as they do not relate to any technology,
platform, or other implementation specific issues, like data structures, or pro-
gramming language constructs. Abstract specifications are part of the software
engineering process; they are written by computer scientists. Basically abstract
specifications represent a domain ontology, defining the features of the domain
and their behavior in a formal language (Gruber, 1993; Guarino, 1998). For
domain experts — here: geographers — abstract specifications may be difficult
to read.

However, the domain experts have to check and guarantee that an abstract
specification is correct, which means it describes the domain in a way domain
experts perceive it. Checking a specification for correctness is a process that
needs extensive communication between the authors and the domain experts,
and tools supporting this communication. The most popular tool is based on a
graphical interface. Graphics appeals intuitively, which gives reason for the pop-
ularity of such a tool. Nevertheless understanding graphics heavily depends on
interpretation, which includes the danger of miscommunication. Our approach
will be based on a language with a formal semantics. This language allows to
develop ezecutable specifications, thus the communication between authors and
domain experts consists of discussing test cases and their behavior, instead of
reading code or interpreting graphics.

1.2 Why are abstract specifications important?

Geographic information systems handle spatial features in very different ways.
If systems shall co-operate with each other they need a language to do so. This
language abstracts from implementation issues. Such a language is provided
by standardized interfaces that vendors can add to their systems. Standardized
interfaces can be utilized by other systems without knowledge of proprietary for-
mats. Each system translates then the standardized structures and functionality
into internal structures and methods. Such interfaces are defined by organisa-
tions like OGC or ISO by providing abstract specifications and standardized
ways to implement them. Thus the bigger goal of standards is interoperabil-
ity between systems, allowing data access across platforms and communication
between networked value-adding services.

1.3 What is the contribution of this paper?

The motivation for this paper is twofold:

e The lack of formalized semantics of spatial datasets and operations is
considered as the main handicap in interoperability of spatially enabled
services. Our approach overcomes some aspects of this limitation.

e The lack of specification tools that guarantee correctness and consistency
raises costs and efforts in maintenance of standards and hinders standards
organizations from progress. Our approach should be cheaper in mainte-
nance by providing executable specifications and guaranteed consistency
through the specification life-cycle.



In fact it is the challenge for standards organizations to define open interfaces
that can be proven to be consistent, complete, and can be implemented prov-
able correct (for compliance testing). Algebraic specifications help (Guttag and
Horning, 1978; Lin, 1998; Frank, 1999). Languages supporting to write algebraic
specifications are functional programming languages, which became mature in
the last decade, among them Haskell (Peyton Jones et al., 1999). Functional
programming languages provide a formal syntax, code specifies behavior (the
language atoms are functions) and can be executed (for testing correctness).
Thus they are proposed for the use in standards for several years now (Kuhn,
1994, 1997; Frank and Kuhn, 1999). However, the idea was not recognized by
standards organizations, probably for reasons of existing skills, apparent com-
prehensability of a visual interface, and popularity of other tools — UML is the
dominating modeling language in software industry (Kobryn, 1999).

For that reason our research interest was a proof of practicability for writing
a standard in the functional programming language Haskell, and an investiga-
tion how far abstraction can be done following this way. The hypothesis was
the expectation that this approach describes the semantic aspect of interfaces
(behavior) formally, can be communicated easily, can be checked for type con-
sistency, can be tested for completeness and correctness, and separates clearly
between an abstract and an implementation specification. We report our results
and experiences here. The expected advantages could be verified. However neg-
ative experiences are reported also: pure abstract code turns out to appear
overloaded and difficult to read by humans. With this work we contribute to
the foundations of standardisation efforts in the spatial domain, preserving an
object oriented modeling approach.

The paper is structured as follows. Section 2 presents the problem of writing
abstract specifications in the spatial domain, and it summarizes previous work.
Then our running example is presented in Section 3: the OpenGIS coverage
specification. Section 4 gives an overview of algebraic specifications in functional
programming languages, which is the tool that is applied in Section 5 for a formal
version of the OpenGIS coverage specification. In Section 6 we investigate the
received specification for its properties. Section 7 contains the discussion and
conclusions.

2 Problem statement

In this section the context of the paper is introduced in detail. The role of
specifications for standards is discussed here as well as the specific challenge to
set up standards in the spatial domain. Then the previous work is presented
and related to the contribution of this paper.

2.1 Specifications in the context of standards

The problem of building and maintaining large, i.e. complex and heteroge-
neous information systems — not only spatial ones — is a problem generally
acknowledged by the software industry (Gibbs, 1994). The emerging trend to
componentialization even increases the demand for clean software engineering
methodologies, as different components will have to co-operate with each other.



Software engineering provides many techniques and tools supporting the soft-
ware development process. One of the most important phases of this process
is the specification (Liskov and Zilles, 1978; Liskov and Guttag, 1986). Specifi-
cations rely on abstraction, decomposition, and formal notation of a conceptual
model and represent a model at the logical level of software design (Worboys,
1995). Specifications describe the what of pieces of a task ("what are the ac-
tors?’, 'what are their relations?’, 'what kind of actions have to be taken?’), not
the how (’how do the actions have to be executed?’). Hereby, specifications do
not only name the actions but also describe the restrictions, result and meaning
of these actions, i.e. the semantic aspects of an action.

Specifications are essential for standards: standards typically have to de-
scribe what things are, how they should behave, what correct behavior is, but
not how things should be implemented (data structures and algorithms). Such
specifications do not make any assumption on technologies for implementation
(abstract specifications).

In general, three properties of an abstract specification have to be verified:

1. It has to match with the problem to be specified.

This property is made sure by agreement of experts (validation); thus the
specification has to be communicatable to domain experts.

2. It has to be consistent in itself.

This property can be checked automatically if and only if the specification
is made in a formal language, and the degree of the check depends on the
(type-) strictness of the language.

3. It has to be complete.

This property can be checked semi-automatically via extensive testing,
especially that of exceptions and strange cases. Testing can be alleviated
if the specification is made in an executable language.

The latter two require a tool interpreting and executing the specification. Speci-
fications in functional languages are executable; those in UML are not. However,
also the validation of a functional specification (and of implementations) lacks
for formal tools.

Standards are specifications for the whole software vendor and application
development community. Their development exceeds some of the demands for
a single software product specification by far:

e specifying experts and implementation experts can no longer communicate
directly;

e full understanding of the specification has to be derivable from the speci-
fication documentation directly;

e specifications with a status of a standard should be consistent and error-
free to avoid costly changes to product;

e specifications with a status of a standard need to have some durability
(flexibility is restricted);



e specifications with a status of a standard need general acceptance (only
in case of legal norms — like ISO standards — implementation can be
prescribed).

The main challenge for standard specifications lies in unambiguity. Each vendor
implementing a specification realizes an interpretation of the specification. For
later interoperability of software, this interpretation has not only to be valid, it
has to match in the semantics.

2.2 Complexity of standards for geographic information

Geographic information deals with physical, observable reality as well as social
reality (Searle, 1995). The objects to be dealt with are partly bounded by physi-
cal boundaries (bona fide), partly bounded by agreement of people (fiat) (Smith
and Varzi, 1997). Some of the fiat objects may have an exact definition, some
have not. Definitions of objects (i.e. their boundaries) are a function of obser-
vation context (scale). Observation can never be precise. Thus, dealing with
indeterminate boundaries, a variety of contexts and their ontologies is a con-
stituent for geographic information (Burrough and Frank, 1996). Standardized
specifications of spatial phenomena and services are essential for communicating
geographic information (Frank and Kuhn, 1999; Kuhn, 1997).

In the field of geographic information, several institutions work on standards
to achieve interoperability between different service components, among them
OGC (Kottman, 1999), ISO (ISO, 2000), and several others. Also, there is work
done to align different standards, e.g. between OGC and ISO (@stensen, 2000).

Interoperability standards for spatial information systems deal not only with
data exchange formats between different systems, but define spatial entities as
objects with behavior and include a services model such as for standard coor-
dinate system conversion. Furthermore, standards integrate different forms of
representation seamlessly. Thus, standards for geographic information systems
model highly complex spatial worlds. Specification tools and techniques that
support unambiguity, automatic consistency checking, and modularization are
more necessary then ever.

2.3 Previous work

It becomes clear that the tools used for the specification need a capability to
represent and to deal with semantic, since all readers of a specification should
have an unambiguous understanding of the semantics of a specification. Current
specification techniques in standards organizations are based on visual object
oriented modelling in UML (OMG, 2000; Booch et al., 1999). UML neither has
a formal semantics (see Bruel et al., 2000) nor allows formal modeling of the
semantic aspects of expressions. The latter is usually done by comments in text
form. For that reasons, models in UML are not executable.

The requirements in the field of geographic information recently lead to pro-
posals to use functional languages for writing algebraic specifications (Egenhofer
and Frank, 1992; Frank and Kuhn, 1995, 1999; Kuhn, 1997; Frank, 1999). Al-
gebraic specifications (Guttag and Horning, 1978; Horebeek and Lewi, 1989;
Loeckx et al., 1996) provide the following features:

e they have a mathematical clean form,



e they are sufficiently abstract,

e they are constructive, which means they are executable and their behavior
can be checked, and

e modules can be combined to complex systems.

A recent investigation of many-sorted algebraic data models for GIS showed the
usefulness of the approach, but stated the lack of a suited language (Lin, 1998).
The critique on availability of suited tools is quite old (Backus, 1978), how-
ever, from our point of view functional programming has overcome the usability
problems. Functional programming languages have a formally defined semantics
(Stoy, 1977; Peyton Jones, 1987). Functional languages like Haskell are declar-
ative, operational, and object-oriented (Peyton Jones et al., 1999; Hudak et al.,
1999; Bird, 1998), and thus, fit the need for a usable tool to implement speci-
fications as many-sorted algebras. The work of Kuhn and Frank demonstrates
the usability of Haskell for capturing the semantics of expressions (Kuhn, 1994,
1997; Frank and Kuhn, 1999). Their interest in expressiveness is acknowledged
here; however, a proof of practical applicability still has to be supplied.

2.4 Contribution of this work

We build on the work above, and use many-sorted algebras as basis for the
specification of a spatial standard. Many-sorted algebras allow to specify a spa-
tial standard in separated modules of, for example, features, geometry, spatial
reference systems, etc., and compose them to a whole. Thereby, we use Haskell
as a specification language since Haskell supports the definition of operations as
pure mathematical functions, and also allows to capture the semantics of these
operations formally. Furthermore, it allows to compile, check and execute the
specification.

Our concern in this work is to use the approach above, and investigate its
practicality and usefulness by selecting a real-world spatial standard, and spec-
ifying the syntactic and semantic aspects of a complete section of this standard
formally via Haskell. We look at questions like: If this approach is advantageous
for the above reasons, does it create at the same time new problems? Is the
standard development process different then? What are the consequences for
the creation, the maintenance, and the extension of a standard? Are the efforts
for a formal standard competitive in time and costs? Does the approach have
any impact on the domain? We will report on our findings and compare them
with the practice in standards development.

3 Standards by OGC: The OpenGIS coverage
specification

In this section, we shortly describe the process of how OGC defines specifica-
tions. Following, we will introduce the grid coverage as described in the essential
model to introduce the terminology for the classes of the domain. We also give
a short example of the OGC’s UML specification and the resulting implemen-
tation specification, and discuss this approach.



3.1 The specification process of OGC

OGC is a consortium of industry, academic and government members who meet
regularly to cooperatively define the OpenGIS Model (Kottman, 1999), a stan-
dard for interoperability of GI services and data across different platforms.

In a first phase, the OGC members defined the vision, scope and content of
the model (i.e. a seamless model for vector geometry and rasters as well as a
service model). The result is documented in the abstract specification. The ab-
stract specification does — like a specification during the software engineering
process — describe the problem and tasks without making any assumptions of
possible technologies that might be used to implement it. The abstract speci-
fication consists of two parts: a verbal description, the essential model, and a
semi-formal abstract model using UML. Today, the abstract specification con-
sists of 16 chapters.

To achieve practical interoperability, GIS software itself has to be interopera-
ble; thus, based on the abstract specification, OGC uses a Request-for-Proposal-
process to call for implementation specification proposals from its members!.
An implementation specification uses the abstract specification, and makes a
suggestion of how its concepts should be best implemented using most likely
technologies such as SQL, Java, XML, Microsoft’s COM/OLEDB, or OMG’s
CORBA. The selected technologies depend on the state of art of widely-used
distributed computing platforms. These might change over time, and new imple-
mentation specifications might be added still based on the existing abstract spec-
ification. There is one information specification per platform, and the proposers
have to make sure that the implementation specifications for different platforms
are consistent, especially semantically consistent. Implementation specification
proposals are reviewed by the OGC members and voted on for acceptance as
standard. Implementation specifications are maintained and aligned with each
other during a revision process. At this point, companies start building prod-
ucts based on an implementation specification that exhibit the implementation
specification interfaces. Products can then be branded OGC-compliant if they
fulfill an OGC conformance test.

For this paper, we select the coverage chapter of the abstract specification
(OGC, 2000b), and concentrate on grid coverage, for which recently an imple-
mentation specification has been adopted (OGC, 2000a).

3.2 The OpenGIS essential model for coverage

Coverage is coined by OGC for all kinds of field representations: grid, image,
TIN, polyhedral surface, and more. Coverage is defined as a special subtype
of a feature. In the OpenGIS model feature is the main concept for any kind
of spatial entity. A feature has properties defined as a list of pairs of property
name and property value.

A coverage contains a special property, a coverage function (cfunction). (A
coverage might have one or more cfunctions.) A cfunction is a function that
has a spatial domain, and a set of values as range. Typically, the spatial do-
main of the cfunction is a set of (any) geometries. (In the OpenGIS model,

IFor practicality reasons, these RFPs are for well-defined subparts of the abstract speci-
fications. For example, the implementation specification for geometry was limited in a first
step to the so-called simple features.



geometries are (sets of) any kind of point, line, or polygon.) For each geometry
in the spatial domain, the cfunction evaluates the value at this location. The
general concept of a value is a vector v of single values of different types. An
example would be the temperature and the rainfall at a given point. Thus, the
range of a cfunction is a set of homogeneous vectors. When a cfunction has
a continuous spatial domain, it calculates a value for each point in the spatial
domain via interpolation. In a simpler case, if the spatial domain is discrete,
i.e. it encompasses a finite set of geometries, the cfunction is called a discrete
cfunction. Finally, if the spatial domain is restricted to a finite set of points, we
talk about a discrete point cfunction.

Grids are closely related to discrete point cfunctions. In the special case of
a grid geometry, the domain of the cfunction is a finite set of points in regular
order. Using the grid geometry as a spatial domain, the abstract specification
introduces another specialized discrete point cfunction, the grid value matriz.
The grid value matrix consists of a set of point-value-pairs whereby the points
form a grid. A grid coverage is a specialized coverage containing a grid value
matrix as specialized cfunction. Furthermore, a grid coverage has an evaluator
which evaluates the value for each grid point. If the domain of a grid coverage
is extended to the convex hull of a grid, the evaluator can implement an inter-
polation function to calculate values for each point in the convex hull. Several
interpolation algorithms are used today whereby nearest neighbor is the most
common, and it is also the default function in the OpenGIS specification.

3.3 The OpenGIS abstract model for coverage

The essential model above verbally captures the scope of our example. In a sec-
ond step, the objects of the essential model, their relations, and their properties
are abstracted and represented in UML. We select from OGC’s abstract model
the cfunction and the discrete cfunction to demonstrate the properties of such
a semi-formal representation.

Figure 1 depicts a UML representation of the CFunction, and its relationship
to Coverage. In UML, the arrow between Coverage and CFunction represents
a dependency relationship between an independent Coverage and a dependent
CFunction. However, this presentation is insofar ambiguous since the relation
is not named; if it should represent an association it does not contain mul-
tiplicity information: has a coverage exactly one, or at least one CFunction?
Furthermore, the diagram shows that a CFunction has two methods, evaluate
and domain, and specifies their input and output data types. Invisible here but
attached to the diagram a textual description of parameters and methods can
exist. These textual descriptions are repeated in the textual part of the abstract
model making them visible in the document. The semantic aspect is still not
captured formally.

In Figure 2 is modeled that a DiscreteCFunction is a special case of a
CFunction; thus, DiscreteCFunctioninherits all methods from CFunction and
is able to overwrite them, and new methods can be added. (In UML, the
semantics of an inheritance arrow is clearer than that of a dependency.)

Figure 3 depicts a DiscreteCFunction in a context with Coverage. One
can see that the domain of a DiscreteCFunction is discrete and finite, since it
returns a finite list of geometries. However, the presentation does not capture
which geometry arguments are acceptable for the evaluate function. It might



Coverage

C_Function

devaluate (p : Point) : Vector
% domain () : Geometry

Figure 1: The UML context diagram of OGC for CFunction.

C_Function

7

DiscreteC_Function

Figure 2: The UML class diagram of OGC for DiscreteCFunction.

be that any geometry types are acceptable, or only geometry objects of the type
found in the function’s domain.

3.4 Discussion of the OGC approach

This process demonstrates that the use of UML in the abstract specification is
only semi-formal with important portions of the specification written in English.
The UML part is open to interpretations, and so far ambiguous. Furthermore,
the correctness of the UML model cannot be guaranteed or tested.

A quick comparison of the draft implementation specification for grid cov-
erage with the presented abstract model shows changes in the implementation.
The non-formal derivation of the implementation specification from the abstract
specification allows implementors to interpret the abstract specification, and
make decisions that are not aligned with the intention of the abstract model.
Where the implementation specification can solve problems with an imperfect
abstract specification, a revision of the abstract specification should be initi-
ated. Additionally, implementation specifications for different platforms have
to be aligned, which is also a process managed informally in OGC. Much of the
problems would be solved if implementation specifications were derived from
the abstract model automatically for all platforms (Berre et al., 2000). Again,
this requires a formal abstract model and a way to check the correctness and
completeness of the abstract model. For these reasons we propose another, more
formal tool for the abstract specification.



Coverage

DiscreteC_Function

% evaluate (g : Geometry) : Vector
4% domain () : Geometry[ |
% values () : Vector|[ ]

* num () : Integer

Figure 3: The UML context diagram of OGC for DiscreteCFunction.

4 Functional languages for spatial standards

Here, we recapitulate algebraic specification as one of today’s advanced software
engineering techniques. We choose a functional programming language to write
our algebraic specifications. Thus we will present the principles of the language
also.

4.1 Algebraic specifications

An algebra captures the coordinated behavior of a set of operations that are
applied to the same object. An algebra consists of three parts: a type, a set of
operations, and the behavior (or semantic) of the operations which is defined by
axioms. An algebra does not describe what the objects are but how they behave,
and captures the semantics of this behavior. Algebras can be used to specify
abstract data types by behavior, and do not determine the implementation
(Horebeek and Lewi, 1989; Loeckx et al., 1996). Consider for example a possible
algebra of points, given by a type (or sort in terms of algebra) Points, two
operations getX, getY on the type, which return the coordinates of a point,
and an axiom for equality of two points a and b: equal a b = (getX a ==
getX b) && (getY a == getY b). Note that the axiom is independent from
the internal implementation of points; it defines behavior (or semantics) only.
Many-sorted algebras (Guttag and Horning, 1978; Horebeek and Lewi, 1989;
Loeckx et al., 1996) are structures consisting of some sets of objects (types) and
a number of functions whose arguments and results belong to these sets (Hore-
beek and Lewi, 1989, p. 15). Consider a second type Lines. If there are opera-
tions start and end to return the start and end point of a line, then an axiom
concatenated can be defined that checks whether two lines are concatenat-

ing. The type declaration would be concatenated :: Lines -> Lines ->
Bool, and the specification of the behavior could look like concatenated a b =
(start a == start b) || (start a == end b) || (end a == start b) ||

(end a == end b).
Consider an example related to OGC specifications, on (spatial) features
and their properties. For OGC a feature has an identifier and a list of proper-

10



ties; one of the properties is the geometry of the feature, which can be accessed
directly. The algebra of Features utilizes objects of the type Properties;
it provides operations and axioms on features. Typical operations could be
getFeatureProperties: Feature -> [ Property ], where the square brack-
ets denote a list, or getGeometry :: Feature -> Property. A second alge-
bra specifies operations and axioms for Properties. Then both algebras can
be composed with no internal adaptation.

Composability of many-sorted algebras allow a piece-wise development of the
specification. The pieces can be composed as long as types are pair-wise disjoint
and no naming conflict occurs. Composability is essential for specifications in
complex domains like the spatial. It is part of the abstraction of the domain
(Liskov and Guttag, 1986). In executable algebraic specifications pieces can be
tested separatly for correctness and completeness, and afterwards combined to
more complex parts.

4.2 Functional programming languages for algebraic spec-
ifications

Using functional programming languages (Backus, 1978; Henson, 1987; Jones,
1995; Frank and Kuhn, 1995; Bird, 1998) for writing specifications, the mathe-
matical foundation of many-sorted algebras is preserved, and additional advan-
tages are obtained from automatic processing and interpreting the code. Func-
tional languages appear as natural means to describe algebras. Without further
emphasis, the examples above were already given in the syntax of Haskell, the
functional language of our choice. The code for, e.g., points looks like:

class Points p where

X :: p —> Float -- operation declaration
y :: p —> Float -- operation declaration
equal :: p —> p -> Bool -- axiom declaration
equal a b= (xa==xb) & (y a ==y b) -- axiom definition

An algebraic specification written in Haskell consists of classes (for the types of
the algebras) and functions that describe azioms as well as operations. Functions
defined at class level represent axioms, and functions defined at instance level
represent operations. Consider the example of points. The function equal could
be defined on class level. For the operations returning coordinates we need an
instance for an explicit data type:

data Point = Pt String Float Float

instance Points Point where
x (Pt name xval yval) = xval -- operation definition
y (Pt name xval yval) = yval -— operation definition

Compiler or interpreter for the language first parse the code. Code accepted
by a parser is written in correct syntax. Further checks depend on the specific
properties of the chosen language. We decided to specify in Haskell (Hudak
et al., 1999; Bird, 1998), or, to be precise, in an implementation of Haskell called
Hugs (Jones et al., 2000). Haskell has a number of properties recommending its
use for algebraic specifications:

11



o Haskell is a strongly typed language, i.e., each type has to be unambiguous
at compile time. For that reason, code accepted by a compiler or an
interpreter guarantees type consistency additionally.

e Related to the type concept, Haskell allows no side effects, which elimi-
nates unforseen interactions and makes the behavior transparent.

e Haskell is a polymorphic typed language. Classes and functions can be
instantiated for different types, which increases re-usability of code. More-
over, the class concept of Haskell supports multiple inheritance and over-
loading; this will be exploited in the following for modularization.

e Modularity accomplishes the requirement for abstraction and decomposi-
tion. Furthermore, it resolves the naming problems combining different
algebras by providing qualified namespaces.

e Haskell is a declarative language. It provides the necessary level of ab-
stractness for specifications by describing exactly the what and not the
how. This makes the code extremely compact and readable, compared to
imperative languages. Declarativeness captures the semantics of function
signatures.

e The class concept and declarativeness allow to specify constructors that
extend an initial specification, consisting of a class name and the decla-
ration of its functions only, to a constructive specification (Loeckx, 1987;
Loeckx et al., 1996). Constructive specifications are executable; i.e., con-
structive specifications represent at the same time prototypes of the spec-
ified program. Constructive specifications have an operational semantics
which is the behavior of the program.

Consider points again. An executable specification can be tested, like:

a, b :: Point

a = Pt "pointA" 45.9 57.6
b = Pt "pointB" 49.3 53.1
test = equal a b

In the next section we use Haskell for a many-sorted algebraic constructive
specification of the grid coverage.

5 A functional version of the OpenGIS coverage
specification

In this section the coverage abstract model is presented in an alternative form,
as an application of Haskell. In principle, there are two approaches to achieve
a formal specification from the OGC documents:

1. One can start from the essential model, then extract the objects and the
relations from the essential model, and put them into a functional lan-
guage.

2. One can start from the abstract model, taking the objects and relations
and translate them into a functional language.

12



The first approach yields a specification which is nearly independent from the
abstract model of OGC. Differences would relate more to different abstractions
and conceptualizations than to different capabilities of the used tools UML
and Haskell. The second approach relies on the abstraction in OGC’s abstract
model. Thus it has to cope with the ambiguity and inconsistency of the UML
specification. However, the goal of this investigation is a comparison of expres-
siveness and practicability of tools and not of the specifications, and therefore
the second approach is chosen. The transition from UML to the functional lan-
guage is described by examples that show the similarities and the differences
compared to the UML model. These similarities and differences are discussed.

5.1 The classes and function declarations

In this section the UML classes and operations are translated into Haskell classes
and function declarations. Behavior (function definitions) will be added in the
next section.

Consider the (UML-)class CFunction in Figure 1. Representing a class C-
Functions in Haskell looks like:

class CFunctions cf where
evaluate :: cf -> Geometry -> Vector
domain :: cf -> [Geometry]

The class contains the declaration of two functions, evaluate and domain. The
function evaluate takes a CFunction of the abstract data type cf and a ge-
ometry, and returns a vector of function values. The implicit meaning that the
vector contains the values at the given location of the geometry will be explicated
later. The function domain takes a CFunction, and returns a list of geometries.
Again the meaning that the geometries represent the domain of the coverage
function is explicated later.

Declarations introduce the names of functions and their parameter types. So
far the code example shown above has exactly the same power of expressiveness
as the UML code of Fig. 1. A minor difference (which is not visible in this
example) is evident in the constraint that in Haskell everything has to be written
as a function: even parameters in UML classes will be functions in Haskell (the
UML class CFunction contains no parameters). From the perspective of an
abstract specification — i.e., a specification with no reference to implementation
specific details or architectures — this is an advantage: the abstract specification
in Haskell is restricted clearly to interfaces, it does not allow decisions how to
code parameters.

A closer look at the example shows significant differences between the UML
and the Haskell specification of a CFunction:

e We decided to describe the domain via a list of geometries, where the UML
specification shows only a single geometry. This is not a contradiction be-
cause OGC considers lists of geometries to be a geometry (GeometryCol-
lection) again. However, in the class DiscreteCFunction (Fig. 3) the
UML code uses lists for the domain, too. We need a consistent notation
for the type checking system of Haskell.

e Another difference can be found in the parameter type of the evaluation
function in CFunctions. OGC’s UML code shows a point where we de-

13



cided to put in a geometry. One reason is again type consistency with the
inheriting class DiscreteCFunction. Another reason is an inconsistency
in OGC’s text with its UML code; the text demands that the function
parameter has to use the geometry type of the domain of the CFunction,
otherwise the function should return an error.

The correct specification of the UML-class DiscreteCFunction (Fig. 3) is in
Haskell:

class CFunctions a => DiscreteCFunctions a where
num :: a -> Int
values :: a -> [Vector]

The functions evaluate and domain are inherited and need not to be declared
again.

Following the shown approach the UML model of OGC can be translated
into Haskell with the same power of expression but more consistent.

5.2 Semantics

Semantics of declarations in UML as well as in Haskell are captured mostly in
the names of the declared classes and functions. The abstract model of OGC
uses extensive verbal descriptions to document the meanings of classes and
the behavior of their interfaces. These descriptions need to be interpreted by
readers of the abstract model. In contrast, Haskell allows to specify semantics
in a formal manner.

Given a declaration of the function domain (see above), one can add its
behavior by:

domain cf = map geom (getGVPs cf)

getGVPs is an operation in the algebra of cfunctions returning the geometry-
value-pairs that form the cfunction. The function geom is an operation in the
algebra of geometry-value-pairs. It returns the geometry for a given geometry-
value-pair. Finally, map is an operation in the algebra of lists, which is in-build
in Haskell. It maps a function on each element of a list, returning the list of
function results. Thus the code defines the semantic of domain by stating that
the domain of a cfunction is the list of all geometries that are contained in the
cfunction’s defining geometry-value-pairs.

Similarly the two functions of DiscreteCFunctions can be defined, speci-
fying their semantics formally:

num dcf length (domain dcf)

map value (getGVPs dcf)

values dcf

The num method returns the cardinality of the domain. This is determined by
the length of the list of all geometries, which is finite since DiscreteCFunction
has a finite domain. The values method returns the list of values of all
geometry-value-pairs that define the DiscreteCFunction.

The examples show that implementations in Haskell specify behavior, not
algorithms. By that, function implementations remain compact and compre-
hensive, i.e. the formal specification of semantics can be communicated.

14



5.3 Abstraction

The Haskell examples from above were kept simple for comprehensability. A
functional programmer would probably start with them, but then the code
can be improved with the goal to separate an abstract specification from all
implementation issues. The above examples still contain references to concrete
data structures in the typed declarations, namely Geometry and Vector. The
use of data types can be eliminated by introducing abstract classes (Geometries,
Vectors) which describe the behavior of abstract types (g, v). After revision
the specification is purely abstract:

class (Geometries g, Vectors v)
=> CFunctions agv | a ->g v

where
evaluate tta>g->v
domain ita—>[g]l

Thus, this specification is about semantics of types, not about their implementa-
tion, a desirable property for abstract specifications. Implementation decisions
for data types can be shifted completely to the realization of classes in instances,
for example:

instance CFunctions CFunction Geometry Vector

where the data types CFunction, Geometry, and Vector replace the abstract
data types of the specification. Abstraction in this way shifts commitments for
data types through dependency chains to base classes. Base classes have no
further dependencies. In the coverage specificaiton, an example of a base class
is PropertyValues. This class is needed only for fixing a data type, and no
functions need to be specified:

class PropertyValues a
instance PropertyValues PropertyValue

Thus the abstract specification can be limited to class declarations only. This
set of class declarations can be checked for type consistency. However, pure
class declarations are not executable. Adding instances completes the semantic
specification and links to data types for executability. Instances are comparable
to implementation specifications of OGC, if they are considered as interpreta-
tions of the abstract specification for a programming environment. Here the
environment is Haskell, and we remain still independent from specific technolo-
gies like CORBA or COM. Abstract and implementation specification together
can be executed and tested.

5.4 The grid coverage in Haskell

Following the approach presented above the grid coverage section from OGC’s
specification Coverage and its Subtypes (OGC, 2000b) was transferred into
Haskell. In this section, we present our findings.

The complete code of the formal specification is available via ftp from ftp://-
ftp.geoinfo.tuwien.ac.at/winter/. The unzipped package can be viewed by
a normal text editor, and it can be tested using Hugs (Jones et al., 2000), which
is public domain software.

15



Coverage and grid coverage are specified in about 20 modules/classes. The
size of the pure abstract specification is compacter than OGC’s abstract model.
However, we added constructors and test data for test cases, which increases
the volume to about 20 A4 pages.

Characteristics of the Haskell specification are:

e A class hierarchy CFunctions, DiscreteCFunctions, DiscretePointC-
Functions, and GridValueMatrices. GridValueMatrices are composed
by array collections. Each array has to have a constant data type, and
the arrays have to have the same origin, orientation, resolution and size.
Orthogonal to the matrices, PointValuePairs exist which represent the
values at one grid position (or, if the evaluation function allows interpo-
lation, at any point in the grid coverage area).

e A class hierarchy Feature, Coverage, and GridCoverage. The GridCo-
verage is a feature represented by a (distinctive) property with the name
"CFunction" and the value GridValueMatrix.

e A class for AnyType, a complex data type that can be anything, a number,
a string, a geometry, or a CFunction. This type is used for the property
values of feature properties. Methods of the class AnyType allow to deter-
mine the actual type as well as the value of the property.

One goal of the formal specification in Haskell is the proof of practicality.
For that reason, we cover only a well-defined subset of the abstract specification,
namely coverage and grid coverage, and set out to achieve similar completeness
for the other parts of this abstract model.

6 Properties of the functional specification

The Haskell package representing an abstract model of coverage and grid cov-
erage is executable and can be tested. We report here about the proof of con-
sistency and about the checks for correctness and completeness.

6.1 Consistency

Having the specification in a formal typed language, (internal) consistency can
be checked automatically. The Haskell interpreter checks syntax and grammar,
not the semantics. Take again the domain example:

domain :: cf -> [Geometry]
domain cf = map geom (getGVPs cf)

While loading the module, the Haskell interpreter parses the code (it is valid
Haskell, so no objections will occur) and checks the chain of types in the called
functions. To do so the function declarations are utilized:

— The method getGVPS takes a CFunction and returns a list of Geometry-
ValuePairs.

— The method map takes a function (here: geom) and maps it onto a list.
The result is a list of the output type of the function: geom takes a
GeometryValuePair from the list and returns a Geometry.

16



— That means the method domain takes a CFunction and returns a list of
Geometries.

The consistency check for domain will succeed, because the types fit together,
and the chain matches with the declaration of domain. Because the check of
consistency passes automatically and for the complete code, we can state that
consistency is proven if a module or package is loaded successfully. — Contexts
and type dependencies in abstracted specifications load a lot of additional type
checking work to the interpreter, but the tasks are mainly the same, and type
conflicts will be recognized by the interpreter.

Specification tools for UML support checking of consistency not with this
strictness. Neither the language UML is a typed language, nor an interpreter
for UML is available.

6.2 Correctness

Some of our interpretations of the essential model of OGC may give reason
for discussion. This is a desirable property of a formal specification: it should
improve communication between domain experts (i.e, the authors of the essential
model) and formalists (the authors of the abstract model). If contradictions
between the two models or misinterpretations of the essential model can be
easily identified and eliminated, the specification method is useful. Furthermore,
the abstract model in Haskell is executable. It allows testing of behavior, i.e.
domain experts only have to check and to accept the behavior. Behavior is
communicated and discussed in form of test cases (critical ground terms) which
can be set up in Haskell easily. Execution of the tests check that the values of
the test cases are the values expected.

Our Haskell specification shows some differences to OGC’s abstract model
in UML. This is due to the fact that we were required to make design decisions
that captured not only the parts but also the relationships between the parts in
a coherent, and compilable way. Additionally we specified constructors among
the operations, creating constructive specifications. In this sense, we produced a
specification that is closer to an implementation specification, and thus, narrow
the gap between an abstract and an implementation specification.

The development of the Haskell specification showed significant shortcomings
of OGC’s abstract model. These shortcomings exist regarding definitions that
could be consistent, but are not correct when tested. Examples are:

e Evaluation of coverage. All types of CFunctions use a multi-type value
vector. However, the Evaluator represents one single evaluation (or inter-
polation) method, which is not useful for multi-type value vectors (multi-
type vectors are allowed explicitly).

e Inheritance of properties, like Evaluator or SpatialReferenceSystem,
through the hierarchy of CFunctions, GridValueMatrix, and GridCove-
rage, is not evident in the abstract model. That leaves no significant
difference between GridValueMatrix and GridCoverage, because all re-
quired properties for the GridCoverage are taken from higher classes and
are not unique for the GridCoverage.

What cannot be checked in the consistency check is the behavior of functions.
This exceeds internal correctness and refers to a correct formal representation

17



of another model, the essential model of the domain. Only the domain expert
can evaluate the behavior; no automatic routine can guarantee correctness.

One possibility to check behavior is reading, understanding and accepting
the code. Compared to imperative programming languages, declarative code
is extremely compact and could be understood easily by Haskell programming
experts. However, because the validation of behavior has to be done in coordi-
nation with domain experts, code may not be the best way to communicate. An
alternative is to check behavior by examples. Choosing typical, simple or even
trivial examples from the specified domain eases communication with domain
experts in evaluating the result. Consider again the domain method. Given any
simple CFunction the method domain can be applied on it, and the result can
be evaluated:

cf :: CFunction
ctf = ...
test :: [Geometryl]

test = domain cf

We conclude that tests of behavior are easy to provide in an interpreter envi-
ronment. Our Haskell modules typically have implemented some test functions
at the end of each file; they can be called directly.

6.3 Completeness

We made several short cuts in the functional specification. For instance, Fea-
tures are simplified here, and also we do not consider non-regular Discrete-
PointCFunctions. Doing so we achieve a (more or less) complete functional
specification with regard to the chosen topics from the essential model. Ad-
ditions can be made by merging other algebras, e.g., for Features. Merging
algebraic specifications do not require any changes inside of given specifica-
tions. This is especially true for specification tools that provide namespaces,
like Haskell with its concept of qualified import.

After the agreement that the specification reflects the purposes of the essen-
tial model, tests can be continued to check the treatment of extremal test cases.
The procedure is in principle the same as before. As a result, it could be stated
which extremal cases or exceptions are covered by the specification.

7 Discussion and conclusions

7.1 Summary

We proposed a formal tool for specifying spatial standards, using a functional
programming language for writing many-sorted algebras. We exemplified the
applicability for a topic from the OpenGIS Consortium’s bookshelf. Our formal
version of that abstract model could be compared in detail and as a whole with
OGC’s abstract model as well as with OGC’s implementation model for the grid
coverage. We verified some (expected) advantages of the formal specification:
a formal semantics of specified interfaces, an executable prototype, guaranteed
consistency, an extendable algebraic structure, a total abstraction from imple-
mentation. Additionally, we exemplified the complexity of abstract formal code,

18



and we argued that communication of the specification should be made through
its behavior instead of its code.

Our formal specification remains incomplete with regard to OGC'’s coverage
specification. With the presented specification procedure, other parts of OGC’s
specification could be added, like triangulated irregular networks, or Thiessen
polygons. We remain incomplete also with regard to cuts at the limits of our
selected topic; for example, the class Features is realized only in its most
primitive version. Features are treated in another book of OGC. A many-
sorted algebra for Features can be added easily, replacing our poor version.
Hugs supports the composition by separating the namespaces of modules.

The provided formal specification contains constructor functions and utilizes
them for test cases. Test cases show the behavior of the specification. Their
real value lies in the possibility for implementers to check the behavior of their
implementation against the behavior of the specification. Conformance testing
— up to now an external and expensive process — could make profit from this
property by delivering the conformance test cases together with the specification
for in-house testing.

7.2 Conclusions and future work

We have shown that formal specifications in functional languages are manage-
able and turn out to be valuable. The applied specification technique is superior
to semi-formal visual modeling in UML due to formal semantic, consistency, and
executability. It is to be expected that such specifications are cheaper in ap-
plication development and conformance testing. Even more important, it is to
be expected that such specifications are easier to maintain, due to automatic
checks and direct testing capabilities. Therefore, it can be recommended to
apply the technique in spatial standards organizations.

From a scientific perspective, we have shown how to separate abstract and
implementation parts in formal specifications. Further we have made clear the
differences between a semi-formal and a formal specification, and developing the
formal version forced us to solve the inconsistencies in the existing semi-formal
specification. We see the following open questions.

e Can abstract modeling in Haskell be supported by a visual tool similar to

UML?
Looking at our procedure — we took the UML classes and methods as
they are —, we expect that a visual tool similar to UML-tools would

help to create specifications from scratch. We expect also that such an
improvement of the user interface would improve the acceptance of Haskell
in the standards community.

e Can a formal specification be transformed automatically in less formal
specifications, e.g. in UML?

This idea could improve the acceptance, too. In principle, there is no
problem, because class names, class dependencies, and function names and
types can be taken directly from the functional code. However, putting
this in UML provides a less formal specification, with the loss of all behav-
ioral information. A special problem is the translation of formal function
definitions into readable texts.

19



e Can an OGC implementation specification be derived automatically from
Haskell?

Implementation specifications are provided for several technologies by
OGC. It would be desirable to derive these specifications automatically,
i.e. aligned in their semantic.

e How far can we go with Haskell?

We have shown that a single topic of OGC’s bookshelf can be specified in
Haskell. Also we have stated that other algebras can be added without
any difficulty. Further, in Haskell a specification is identical to its proto-
type. If once the complete bookshelf is specified in Haskell, one has at the
same time a GIS prototype conforming with the OGC standard (better:
realizing the OGC standard).

Acknowledgements

Gerhard Navratil and Andrew Frank, both TU Vienna, gave valuable input and
ideas to improve the functional specification. Also we gratefully acknowledge
the help of Cliff Kottman, OGC, in interpreting OGC’s abstract specification
Topic 6: The Coverage and its Subtypes.

References

Backus, J., 1978. Can programming be liberated from the von neumann style?
A functional style and its algebra of programs. Communications of the ACM
21, 613-641.

Berre, A. J., Skogan, D., Gronmo, R., Solheim, I., Hoff, H., Skjellaug, B., 2000.
Practising the ISO/TC 211 approach to GI interoperability. In: Space Appli-
cations Institute (Ed.), 6th EC-GI&GIS Workshop Lyon. European Commis-
sion, Joint Research Centre, Brussels.

Bird, R., 1998. Introduction to Functional Programming Using Haskell. Series
in Computer Science. Prentice Hall Europe, Hemel Hempstead, UK.

Booch, G., Rumbaugh, J., Jacobson, I., 1999. The Unified Modeling Language
Reference Manual. Addison-Wesley, Reading.

Bruel, J.-M., Evans, A., France, R., Lano, K., Kent, S., Moreira, A.,
Rumpe, B., 2000. The precise UML group home page. Tech. rep.,
http://www.cs.york.ac.uk/puml/index.html.

Burrough, P. A.) Frank, A. U. (Eds.), 1996. Geographic Objects with Indeter-
minate Boundaries. Vol. 2 of ESF-GISDATA. Taylor & Francis.

Egenhofer, M. J., Frank, A. U., 1992. Object oriented modeling for GIS. Journal
of the Urban and Regional Information Systems URISA 4 (2), 3-19.

Frank, A. U., 1999. One step up the abstraction ladder: Combining algebras
— From functional pieces to a whole. In: Freksa, C., Mark, D. M. (Eds.),
Spatial Information Theory. Vol. 1661 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, pp. 95-107.

20



Frank, A. U., Kuhn, W., 1995. Specifying open GIS with functional languages.
In: Egenhofer, M. J., Herring, J. R. (Eds.), Advances in Spatial Databases.
Vol. 951 of Lecture Notes in Computer Science. Springer, Berlin, pp. 184-195.

Frank, A. U., Kuhn, W., 1999. A specification language for interoperable GIS.
In: Goodchild, M. F., Egenhofer, M., Fegeas, R., Kottman, C. (Eds.), Interop-
erating Geographic Information Systems. Kluwer, Norwell, MA, pp. 123-132.

Gibbs, W. W., 1994. Software’s chronic crisis. Scientific American 271 (3), 72—
81.

Gruber, T. R., 1993. Toward principles for the design of ontologies used for
knowledge sharing. Technical report ksl 93-04, Knowledge Systems Labora-
tory, Stanford University.

Guarino, N., 1998. Formal ontology and information systems. In: Guarino, N.
(Ed.), 1st International Conference on Formal Ontology in Information Sys-
tems. IOS Press, Trento, Italy.

Guttag, J. V., Horning, J. J., 1978. The algebraic specification of abstract data
types. Acta Informatica 10, 27-52.

Henson, M. C., 1987. Elements of Functional Languages. Computer Science
Texts. Blackwell Scientific Publications, Oxford.

Horebeek, I. V., Lewi, J., 1989. Algebraic Specifications in Software Engineering.
Springer-Verlag, Berlin.

Hudak, P., Peterson, J., Fasel, J. H., 1999. A gentle introduction to Haskell 98.
Tech. rep., http://www.haskell.org/tutorial/.

ISO, 2000. ISO/TC 211 programme of work. Tech. rep.,
http://www.statkart.no/isotc211/pow.htm.

Jones, M. P., 1995. Functional programming with overloading and higher-order
polymorphism. In: Jeuring, J., Meijer, E. (Eds.), Advanced Functional Pro-
gramming. Vol. 925 of Lecture Notes in Computer Science. Springer, Berlin,
pp- 97-136.

Jones, M. P., Reid, A., Yale Haskell Group, Oregon Graduate Institute of Sci-
ence and Technology, 2000. Hugs online. The Hugs 98 system home page,
http://www.haskell.org/hugs/.

Kobryn, C.; 1999. UML 2001: A standardization odyssey. Communications of
the ACM 42 (10), 29-37.

Kottman, C. A.; 1999. The Open GIS Consortium and progress toward interop-
erability in GIS. In: Goodchild, M. F., Egenhofer, M., Fegeas, R., Kottman,
C. (Eds.), Interoperating Geographic Information Systems. Kluwer, Norwell,
MA, pp. 39-54.

Kuhn, W., 1994. Defining semantics for spatial data transfers. In: Waugh, T. C.,
Healey, R. G. (Eds.), Advances in GIS Research — Proc. 6th Int. Symp. on
Spatial Data Handling. International Geographical Union, Edinburgh, pp.
973-987.

21



Kuhn, W., 1997. Approaching the issue of information loss in geographic data
transfers. Geographical Systems 4 (3), 261-276.

Lin, F.-T., 1998. Many sorted algebraic data models for GIS. International
Journal of Geographical Information Science 12 (8), 765-788.

Liskov, B., Guttag, J., 1986. Abstraction and Specification in Program Devel-
opment. The MIT Electrical Engineering and Computer Science Series. MIT
Press, Cambridge, MA.

Liskov, B., Zilles, S., 1978. An introduction to formal specifications of data
abstractions. In: Yeh, R. T. (Ed.), Current Trends in Programming Method-
ology. Vol. 1. Prentice-Hall, Englewood Cliffs, N.J., pp. 1-33.

Loeckx, J., 1987. Algorithmic specifications: a constructive specification method
for abstract data types. ACM Transactions on Programming Languages and
Systems 9, 646—685.

Loeckx, J., Ehrich, H.-D., Wolf, M., 1996. Specification of Abstract Data Types.
Wiley-Teubner, Chichester.

OGC, 2000a. OpenGIS grid coverages implementation specification. Implemen-
tation Specification Draft Version 1.0, Open GIS Consortium.

OGC, 2000b. The OpenGIS specification model, topic 6: The coverage type and
its subtypes. Tech. Rep. 00-106, Open GIS Consortium, Inc.

OMG, 2000. UML resource page. Tech. rep., http://www.omg.org/uml/.

@stensen, O., 2000. Joint steering group on spatial standardization and related
interoperability. Tech. rep., http://www.spatialstandards.org/.

Peyton Jones, S., Hughes, J., Augustsson, L., Barton, D., Boutel, B., Burton,
W., Fasel, J., Hammond, K., Hinze, R., Hudak, P., Johnsson, T., Jones, M.,
Launchbury, J., Meijer, E., Peterson, J., Reid, A., Runciman, C., Wadler,
P., 1999. Haskell 98: A non-strict, purely functional language. Tech. rep.,
http://www.haskell.org/onlinereport/.

Peyton Jones, S. L., 1987. The Implementation of Functional Programming
Languages. Prentice Hall International Series in Computer Science. Prentice
Hall, New York.

Searle, J. R., 1995. The Construction of Social Reality. The Free Press, New
York.

Smith, B., Varzi, A. C., 1997. Fiat and bona fide boundaries: Towards an on-
tology of spatially extended objects. In: Hirtle, S. C., Frank, A. U. (Eds.),
Spatial Information Theory (COSIT "97). Vol. 1329 of Lecture Notes in Com-
puter Science. Springer, Laurel Highlands, PA, pp. 103-119.

Stoy, J. E., 1977. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press, Cambridge, Massachusetts.

Worboys, M. F., 1995. GIS: A Computing Perspective. Taylor & Francis, Lon-
don.

22



