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ABSTRACT
Traditional means of observing the ocean, like fixed moor-
ing stations and radar systems, are difficult and expensive to
deploy and provide coarse-grained and data measurements
of currents and waves. In this paper, we explore the use of
inexpensive wireless drifters as an alternative flexible infras-
tructure for fine-grained ocean monitoring. Surface drifters
are designed specifically to move passively with the flow of
water on the ocean surface and they are able to acquire
sensor readings and GPS-generated positions at regular in-
tervals. We view the fleet of drifters as a wireless ad-hoc
sensor network with two types of nodes: i) a few pow-
erful drifters with satellite connectivity, acting as mobile
base-stations, and ii) a large number of low-power drifters
with short-range acoustic or radio connectivity. Using real
datasets from the Gulf of Maine (US) and the Liverpool
Bay (UK), we study connectivity and uniformity properties
of the ad-hoc mobile sensor network. We investigate the ef-
fect of deployment strategy, weather conditions as well as
seasonal changes on the ability of drifters to relay readings
to the end-users, and to provide sufficient sensing coverage
of the monitored area. Our empirical study provides useful
insights on how to design distributed routing and in-network
processing algorithms tailored for ocean-monitoring sensor
networks.

1. INTRODUCTION
Establishing a fine-grained model of local ocean currents

is important since currents carry nutrients and other sub-
stances, which affect ecosystems in coastal regions. For
example, researchers are interested in establishing current
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models for the Gulf of Maine (US) since they distribute
a specific type of algae to shellfish off the coast of Maine
during the warm summer months; the shellfish consuming
the algae turn toxic for humans (’red tide’ phenomenon)[1].
Today, major ocean currents are established using coastal
radar; however, the information is spatially and temporally
too coarse. We investigate the alternative deployment of a
fleet of inexpensive ocean drifters which are passively pro-
pelled by the current and report their GPS-based location
and trajectories to the end user.

Today, large-scale sensing platforms such as stationary
moorings, research vessels, costal radar (CODAR) or large
gliders are state of the art in ocean monitoring. In the fu-
ture, they will be combined with new technology develop-
ments such as small-scale, inexpensive drifters and/or au-
tonomous underwater vehicles (AUVs) such as gliders. A
drifter is a small computing platform the size of a basket-
ball which floats on the ocean surface, usually equipped with
a long underwater peddle which moves the sensor as the
ocean current moves (instead of the wind). Sensor boards
can be attached to detect phenomena such as oil spills or
marine microorganisms [2]. In contrast to drifters, AUVs
are self-propelled and determine their movement direction
and travel speed in an autonomous way. Both types of plat-
forms contain a battery supply, a GPS device, and wireless
communication. Wireless communication media for shallow
areas use acoustic signals with a communication distance of
5-10 Miles (shallow water areas are regions of the ocean that
do not exceed depths of 100m).

Today, drifters are often deployed in a singular fashion,
and use satellite communication to upload data to a cen-
tralized computer. In this paper, we explore the use of a
fleet of inexpensive wireless drifters as an alternative flexible
infrastructure for fine-grained ocean monitoring. We view
the fleet of drifters as a wireless ad-hoc sensor network with
two types of nodes: i) a few powerful drifters with satellite
connectivity, acting as mobile base-stations, and ii) a large
number of low-power drifters with short-range acoustic or
radio connectivity. Our objective is twofold: using a fleet of
small-scale sensor nodes that communicate with each other
using lower-energy acoustic signals instead of a satellite up-
link saves large amounts of energy. Additionally, the fleet
provides more detailed information by covering an ocean re-
gion in high density. The passive movement of drifters can



be used to derive actual ocean current data on a detailed
scale. Deploying a fleet of mobile ad-hoc sensor nodes on
the ocean surface to track and monitor ocean currents in a
fine-grained, near real-time scale is a novel research problem,
both from the perspective of computer science and oceanog-
raphy.

In this paper, we explore communication connectivity and
sensing uniformity of a fleet of a mobile ad-hoc sensor net-
work using real datasets from the Gulf of Maine (US) and
the Liverpool Bay (UK). The challenge is to design, build
and deploy drifter platforms that despite involuntary, pas-
sive movement over long time periods (up to 3 months)
preserve energy power, long-term network connectivity, and
sensing uniformity. Using simulation and real datasets, we
investigate the effect of deployment strategy, weather condi-
tions, and seasonal current changes on the ability of drifters
to relay readings to the end-users, and to provide sufficient
sensing coverage of the monitored area. Our empirical study
provides useful insights on how to design distributed rout-
ing and in-network processing algorithms tailored for ocean-
monitoring sensor networks.

The remainder of the paper is organized as following: Sec-
tion 2 provides relevant technical background on the current
state of the art of ocean sensor networks, drifter platforms
and wireless communication technology for water environ-
ments. Section 3 explores the research questions and the
approach of this paper in more detail. Section 4 contains
our experimental results and we conclude with Section 5.

2. BACKGROUND
In this section, we review the current state of the art in

ocean observation research. The research can be roughly di-
vided into deep sea exploration using submarines and ocean
bottom sensor platforms and robots connected by optical
fiber cable (e.g. NEPTUNE [3]). Another large research
area is in near-coastal observations using fixed large, sensor-
equipped buoys like the moorings in the Gulf of Maine or
Liverpool Bay, and extend the environments with coastal
radar, gliders, and research vessels. Our interest in ocean
surface drifters is with regard to near-coastal deployments
in order to investigate these currents in greater detail.

2.1 Ocean drifters
Today, several projects and platforms for shallow water

drifters exist. The first deployments of drifters were in the
Gulf of Mexico and the Southwestern Caribbean Sea de-
signed to explore the Gulf Stream in more detail. In 1998,
so-called YOTO Drifters were deployed to collect informa-
tion about this North Atlantic current flow in more detail.

Today, the international ARGO project [2] is one of the
largest deployments of drifters in the world oceans. ARGO
is an international program that began in 2000, and by 2007
the deployment of 3000 profiling drifters will be about 100%
complete. The purpose of ARGO is to examine the global
currents, circulation and air-sea interaction, with the goal
of improving climate models and predictions. Partners in
the National Ocean Partnership Program (NOPP)/ARGO
program include the University of Washington, the Scripps
Institution of Oceanography in San Diego, the Woods Hole
Oceanographic Institution, and others.

The Argo Drifter (also called ”Davis Drifter”) was de-
signed to be a surface level (1 meter below surface) La-
grangian drifter which can report position via the Argos

satellite-based data collection system. Location determina-
tion by GPS is also available. The unit consists of a central
sealed tube which contains the electronics and power pack
with a nominal operating life of 9 months. Argo augments
existing upper-ocean observing networks, and extends their
coverage in space and time, their depth range and accuracy,
and enhances them through the addition of velocity mea-
surements. The global array of 3,000 floats is distributed
roughly every 3 degrees (300km).

Since 1993, the Minerals Management Service (MMS) has
deployed over 800 satellite-tracked Davis drifters to measure
the surface ocean currents in areas of active or prospective
oil and gas leasing, primarily in the coastal waters in the
Gulf of Mexico [4].

Currently, drifters are deployed in a singular fashion, and
each drifter reports data via expensive satellite uplink in-
stead of to other drifters or data mules (such as gliders,
buoys or ships). The topic of fleets of surface level drifters
using inexpensive acoustic, radio or optical communication
is today a interesting research topic.

Networks of mobile wireless sensor nodes, however, are
currently being investigated in shallow and deep sea applica-
tions such as the NEPTUNE project. For example, the Star-
bug Aquaflecks and Amour AUV, developed by MIT, are an
underwater sensor network platform based on Fleck motes
developed jointly by the Australian Commonwealth Scien-
tific and Research Organization (CSIRO) and MIT CSAIL
[5]. The 4in long Aquaflecks are combined with a mobile
Amour AUV which acts as a data mule to retrieve data from
the different sensor nodes. The Amour AUV uses 2 types
of communication medium, i.e. an acoustic modem for long
range communication and optical modem for short range.
The WHOI acoustic modem has a data rate of 220 bits/s
over 5000m, while the Aquacomm acoustic modem has a
throughput of 480bit/s with range of over 200m consuming
4.5mJ/bit.

2.2 Wireless communication networks for ocean
environments

Typically, underwater sensor nodes are connected to a net-
work’s surface station which connects to the Internet back-
bone through satellite communication or an RF link. The
sensor nodes located in shallow or surface waters use diverse
wireless communication technologies such as radio, acoustic,
optical or electromagnetic signals. The different technolo-
gies vary with regard to communication range of the sender,
data rate per second (data propagation speed), energy con-
sumption and robustness with regard to noise or interference
(such as Doppler effects) [6].

Radio signals are used in shallow water sensor networks,
however, the travel speed of radio signals through conductive
sea water is very low, i.e. about at a frequency of 30-300Hz.
Experiments performed at the University of Souther Cali-
fornia using Berkeley Mica2 Motes have reported to have a
transmission range of 120 cm in underwater at a 433MHz
radio transmitter [7]. Optical waves do not suffer from such
high attenuation but are affected by scattering. Also, trans-
mission of optical signals requires high precision in pointing
the narrow laser beams, which is less practical in water.

Basic underwater acoustic networks (UWA) are the most
commonly used communication media for water-based sen-
sor networks [8, 9]. Acoustic communication is formed by
establishing two-way acoustic links between various sensor



nodes. UWA channels, however, differ from radio channels
in many respects. The available bandwidth of the UWA
channel is limited, and depends on both range and fre-
quency; the propagation speed in the UWA channel is five
orders of magnitude lower than that of the radio channel.
UWA networks can be distinguished into very long range,
long, medium, short and very short communication range.
As a rule, the shorter the communication range, the higher
the bit rate. Typical ranges of acoustic modems vary be-
tween 10km to 90km in water. Furthermore, acoustic net-
works can be classified as horizontal or vertical, according to
the direction of the sound wave. There are also differences
in propagation characteristics depending on direction. Fur-
thermore, acoustic signals are subject to multipath effects
[10], large Doppler shifts and spreads, and other nonlinear
effects.

Acoustic operation is affected by sound speed. Overall,
the bit rate in water is about five orders of magnitude lower
than in-air transmission. Sound speed is slower in fresh wa-
ter than in sea water. In all types of water, sound veloc-
ity is affected by density (or the mass per unit of volume),
which in turn is affected by temperature, dissolved molecules
(usually salinity), and pressure. Today, the desired informa-
tion transmission rate in the network is 100bit/s from each
node. The available (acoustic) frequency band is 8-15 kHz.
Uncertainty about propagation delays is typical of acoustic
communication. Information is transmitted in packets of
256 bits, and nodes transmit at most 5 packets/h. Typical
deployment of nodes can be as drifters or mounted on the
ocean bottom, and separated by distances of up to 10km
[11].

2.3 Data management for ocean sensor net-
works

Drifters are deployed to continuously collect data. At min-
imum, the end user is interested in the trajectory of the
drifter itself since it contains relevant information about the
ocean dynamics in the area covered. Furthermore, drifter
platforms can be equipped with diverse sensors to sample
the water. Today, salinity and temperature sensors are the
most commonly used sensors. Drifter platforms can also
carry accelerometers to measure wave speed or water ac-
celeration for tsunami detection. Biological sensors detect
marine microorganisms such as algae species and distribu-
tion.

Currently, drifters sense, store, and aggregate data locally
until it is uploaded once a day via satellite connection to a
centralized computer. Today, point sampling is common; re-
gion sampling via several collocated drifters during the same
time period is rare. Typically, local data logger applications
are run that contain limited processing and computing intel-
ligence. Data collection is file-based, and reported in batch
mode.

3. PROBLEM DEFINITION

3.1 Research Statement
Consider a set of n drifters D = {d1, . . . , dn} deployed

in the ocean to monitor a coastal area of interest. Let
(ti, xi, yi) be the time and location of initial deployment of
drifter di. Drifters are designed to be passively propelled
by local currents, are location-aware (using GPS), and are

equipped with a variety of sensor devices to monitor differ-
ent properties of the ocean surface. All drifters have local
wireless communication capabilities that allow them to ex-
change messages with other drifters within range R 1. A
subset of the drifters (B ⊆ D) also has satellite connectivity,
which allows them to propagate sensor data to oceanogra-
phers and other interested users around the globe. We refer
to these special-purpose drifters as mobile base-stations, or
simply base-stations. We thus view the set of drifters as a
hierarchical mobile ad hoc network, wherein simple drifters
forward their readings hop-by-hop to one of the mobile base-
stations.

In order to predict drifter movement, we use a dataset
CUR of coarse-grained radar measurements of current speed
and current direction. Radar measurements are taken at
regular intervals (e.g. every 1 hour) at various junction
points of a grid spanning the area of interest (e.g. one pair of
(speed, direction) measurements per 4km × 4km grid cell).
Current speed and direction conditions at all other loca-
tions are estimated using spline two-dimensional interpola-
tion. Based on these current speed and direction measure-
ments, we evaluate drifter locations over time, and we use
the resulting trajectories as input to our simulations. In a
real setting, drifter trajectories would be derived directly via
GPS.

In this paper, we focus on empirically quantifying two
aspects of drifter behavior: communication connectivity and
sensing coverage.
Communication connectivity: We use two metrics of
communication connectivity: i) one-hop connectivity of a
drifter, which is the percentage of drifters within communi-
cation range of that drifter, and ii) multi-hop connectivity
of the network, which is the percentage of drifters that can
reach at least one of the base-stations on a multi-hop path.
One-hop connectivity provides useful insight into whether
drifters travel in clusters, or whether they disperse quickly
out of each other’s range soon after they are deployed in the
ocean. Multi-hop connectivity is useful for quantifying the
ability of drifters to relay their readings hop-by-hop to one
of the base-stations, and eventually to the end-users.
Sensing coverage: We use two metrics of sensing coverage:
i) sensing density, which is the number of connected drifters
with multi-hop connectivity within the area of interest and
ii) sensing uniformity, which denotes whether drifters are
uniformly dispersed in the area of interest or congested in a
small part of it. To quantify sensing uniformity, we adopt
the definition of MRD (Mean Relative Deviation) proposed
by Ferentinos and Tsiligiridis [12]:

MRD =

∑N
i=1 |ρSi − ρS |

NρS

where N is the number of equally-sized overlapping sub-
areas that the entire area of interest is divided into. Sub-
areas are defined by four factors: two that define their size
(length and width) and two that define their overlapping ra-
tio (in the two dimensions). In the formula above, ρSi is the
spatial density of connected drifters within sub-area i and

1In reality, the communication range is not a perfect circle,
and the delivery ratio depends not only on the distance, but
on a variety of environmental conditions. We leave the study
of realistic communication models in ocean environments for
future work.
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Figure 1: One-hop connectivity: Percentage of drifters within communication range (1 mile) of each drifter
(Liverpool Bay)

ρS is the spatial density of connected drifters in the entire
area of interest. Thus, MRD is defined as the relative mea-
sure of the deviation of the spatial density of drifters in each
sub-area to the spatial density of drifters in the entire area
of interest. Perfect uniformity (MRD=0) is achieved when
each sub-area has the same spatial density as that of the
entire area of interest, while higher MRD values correspond
to lower uniformity levels of drifters.

Given the set of drifters D deployed at specific times and
locations, the subset of base-stations B and a real dataset
of current information CUR that determines drifter trajec-
tories, we would like to address the following questions:

• How is the one-hop connectivity of a drifter affected
by the communication range, deployment location and
deployment period?

• How is the multi-hop network connectivity affected by
the number of base-stations, deployment location and
deployment period?

• How is sensing density affected by the deployment lo-
cation and deployment period?

• How is sensing uniformity affected by the deployment
location and deployment period?

3.2 Application Background
Marine microorganism such as phytoplankton are exceed-

ingly small (2-3μm), and are distributed at varying den-
sity in the ocean water. The 2005 bloom of Alexandrium
fundyense at the New England coast was the most widespread
outbreak of ’red tide’ since a hurricane in 1972 spread the
toxic algae throughout southern New England; the phe-
nomenon received its name for the rust color that intense
concentrations of algae sometimes paint ocean water. The
type of red tide algae in New England contaminates shell-
fish, and can make people who eat the shellfish sick.

In most years, Alexandrium fundyense grows to toxic lev-
els in Penobscot Bay and Casco Bay in Maine and in Canadas
Bay of Fundy. The more intense blooms can lead to the shut
down of clam, oyster, and mussel beds to avoid paralytic
shellfish poisoning of humans. The potent neurotoxin from
Alexandrium accumulates in the meat of filter-feeding bi-
valves. While it does not harm them, it can cause paralysis
and respiratory problems in humans and other animals that
eat the shellfish.

In 2005, concentrations of toxic algae reached levels 40
times the norm, and the plants spread southward to regions
of Cape Cod Bay, Massachusetts Bay, Nantucket Sound, and
Buzzards Bay that are usually not affected by this species.
Shellfish beds in Massachusetts, Maine, and New Hamp-
shire, as well as 15,000 square miles of federal waters, were
closed for more than a month at the peak of the seafood
harvesting season.

Since the distribution of the algae is mainly influenced
by ocean currents, our objective is to find out more in-
formation about ocean surface current dynamics by using
current-propelled drifters. The floating drifters can have
sensors attached, which measure algae occurrence. Overall,
this information and ocean drifter network can be used as a
monitoring, and early warning for red tide dangers.

4. SYSTEM EVALUATION

4.1 Experimental setup
In order to empirically address the questions posed in Sec-

tion 3, we considered two realistic scenarios of deploying
drifters in Liverpool Bay (UK) and the Gulf of Maine (USA).
We used real datasets of surface current measurements mon-
itored in the two coastal areas, to infer how drifters would
move under the influence of these currents.
Liverpool Bay dataset: This data has been provided by
the Proudman Oceanographic Laboratory Coastal Observa-
tory Project, and it was measured by a 12-16MHz WERA
HF radar system, which has been deployed to observe sea
surface currents and waves in Liverpool Bay. In our sim-
ulations, we use current direction and current speed data
measured hourly at the junction points of a 8×11 grid. The
size of each grid cell is 4km × 4km, and thus the size of the
monitored area is 28km × 40km. Current speed and direc-
tion conditions at locations inside the grid (other than the
grid junctions) are estimated using two-dimensional spline
interpolation. Drifter locations are estimated every 5 min-
utes. We simulate the deployment of 10 drifters from a single
point, one drifter at a time at 1-hour intervals. Our simu-
lations typically last for 1.5 days, which corresponds to 432
5-min time-steps. The default communication range is set to
1 mile and the default initial deployment location to 10km
east and 4km north from the bottom left point of the grid.
Gulf of Maine dataset: This data was provided by the
University of Maine’s Physical Oceanography Group, cover-
ing four months (March, June, September and December) of



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400

av
g 

on
e-

ho
p 

co
nn

ec
tiv

ity

5-min time-step

comm. range 0.5 miles
comm. range 1 mile

comm. range 2 miles
comm. range 4 miles

Figure 2: Effect of communication range on average
one-hop connectivity (Liverpool Bay)

2005. It was measured by a 4.3-5.4 MHz SeaSonde HF radar
system, which is deployed to observe sea surface currents in
the Gulf of Maine. In our simulations, we use current direc-
tion and current speed data measured hourly at the center
of cells in a 36x24 grid. The size of each grid cell is 16km x
16km. Current speed and direction conditions at locations
throughout the grid (other than at cell centers) are esti-
mated using two-dimensional Gaussian interpolation. We
simulate the deployment of 10 or more drifters from a single
point, one drifter at a time at 1-hour intervals. Our simu-
lations generally last for 30 days, which corresponds to 720
1-hr time-steps. The default communication range is set to
1 mile and the default initial deployment location to: Lat.
43.5◦ N, Long. −67◦ W.

4.2 One-hop connectivity
A drifter evaluates its one-hop connectivity by dividing

the number of drifters within its communication range by
the total number of drifters excluding itself (neighbors / 9).
Figure 1 shows the one-hop connectivity of each one of the
10 drifters as time elapses, assuming a communication range
of 1 mile. Since drifters are deployed every hour and time-
steps last 5 minutes, the 1st drifter is deployed at time-step
0, the 2nd at time-step 12, and the 10th at time-step 108.
From time-step 108 to 432, observe that most drifters have
2 to 3 immediate neighbors, with the exception of the 7th
drifter, which has zero connectivity most of the time. For
the particular 1.5-day deployment period, Figure 1 shows
no consistent change in one-hop connectivity for all drifters
as time passes, hence no clear trends of drifter dispersion or
clustering.
Effect of communication range: To further investigate
this, we measure average one-hop connectivity of the 10
drifters, and examine the impact of communication range on
connectivity. Figure 2 confirms what the average one-hop
connectivity does not deteriorate with time, except when
the communication range is relatively low (R=0.5 mile). In
addition, one-hop connectivity does not increase quadrati-
cally with the communication range as one would expect if
drifters were uniformly distributed in the coastal area. In
fact, increasing the communication range from 2 to 4 miles
has only a small impact on the size of drifter neighborhoods.
One-hop connectivity results in the Gulf of Maine (Figure 3)
are also largely similar, as one might expect. In nearly all
cases, however, one does observe a sharp decrease in con-
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nectivity begin within the first 48 hours.
Effect of deployment location: The previous two simu-
lations concerned the same initial deployment location and
deployment period. In order to draw more general con-
clusions about drifter behavior, we proceeded to evaluate
the spatial and temporal variations of one-hop connectiv-
ity. Figure 4 shows one-hop connectivity values at different
initial deployment locations; these values are averaged over
all drifters during a particular deployment period. First,
observe that the deployment location plays an important
role in predicting the sizes of drifter neighborhoods. For
example, if drifters are deployed at [23km, 4km] they are
likely to quickly cluster together and form a fully connected
graph, whereas if they are deployed at [20km, 12km] they
have at most 1 to 2 neighbor drifters on average. Designers
of ocean sensor networks should take this variability into
account in order to select a deployment location that will
yield sufficient connectivity for the purposes of routing and
in-network processing.
Effect of deployment period: Surface currents, and thus
drifter movements, are influenced by weather conditions,
and thus vary across different time periods. Figure 5 mea-
sures one-hop connectivity at different 1.5-day deployment
periods, averaged over 10 drifters deployed from a particular
location. Depending on the deployment period, a drifter is
shown to have from 2 to 9 drifters within a 1-mile range. In
certain deployment periods (e.g. on days [1 − 2.5]), the av-
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erage drifter connectivity remains relatively stable, whereas
in others (e.g. on days [3 − 4.5]), it increases with time. In
most periods, we observe signs of drifter clustering, rather
than drifter dispersion. Temporal variability is also seen in
the Maine simulations (Figure 6), where drifters deployed
in the winter maintain their clusters longer than those de-
ployed in the summer, indicative of the comparatively slower
ocean current velocities occurring in the Gulf of Maine at
that time of year. In future work, it would be interesting
to associate one-hop connectivity values with weather con-
ditions (e.g. wind and temperature) in order to be able to
schedule drifter deployment in suitable time periods.
Effect of cluster deployment: We simulated deploying
all drifters at the same time at a single point in the Gulf
of Maine to test its effect on connectivity as compared to
interval-based deployment. Figure 7 shows that single-hop
connectivity declines precipitously in the first fifty hours, as
we have come to expect, and all connectivity is lost within
the first few days. However if the drifters are deployed in
larger groups (e.g. 50-100) then some connectivity can still
be observed up to a month later.

4.3 Multi-hop connectivity
The experiments on one-hop connectivity showed that

drifters rarely form a fully-connected network. In order to
send their sensor readings to the end-users they must ei-
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hourly at the same location (Gulf of Maine)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  50  100  150  200  250  300  350  400

m
ul

ti-
ho

p 
co

nn
ec

tiv
ity

 p
er

 b
as

e-
st

at
io

n

5-min time-step

base-station 1 (1st drifter)
base-station 2 (4th drifter)
base-station 3 (7th drifter)

Figure 8: Multi-hop connectivity per base-station
drifter (Liverpool Bay)

ther be base-station drifters with satellite connectivity, or
relay their readings hop-by-hop to one of the base-station
drifters. Out of the 10 drifters, we consider that up to 3
drifters (1st, 4th and 7th) act as base-stations. Figure 8
shows the percentage of drifters attached directly (through
one hop) or indirectly (through multiple hops) to each one
of the three base-stations. All drifters are deployed from
the same default location [10km, 4km] during days [1− 2.5]
and the default communication range is 1 mile. Between
time-steps 110 and 250, the three base-stations form three
disjoint clusters; after time-step 250, the two clusters led by
base-stations 1 and 3, merge into one cluster with multi-hop
connectivity oscillating between 30% and 60%.
Effect of number of base-stations: The question that
arises is how many base-stations we need to ensure multi-
hop connectivity close to 100%. By summing up multi-hop
connectivities for all base-stations in Figure 8, we observe
that the first base-station alone is able to keep up to 50%
of the drifters connected. The second base-station increased
multi-hop connectivity significantly (up to 100%), whereas
the third base-station does not yield any added benefits.
This was observed because, in the particular deployment,
two of the three clusters of drifters (around two of the base-
stations) quickly merged into one cluster. To study the effect
of base-stations in the more general case, we evaluated multi-
hop connectivity averaged over multiple initial deployment
locations and deployment periods. Figure 9 shows that 1, 2



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 100  150  200  250  300  350  400  450

av
g 

m
ul

ti-
ho

p 
co

nn
ec

tiv
ity

5-min time-step

1 base-station (drifter 1)
2 base-stations (drifters 1,4)

3 base-stations (drifters 1,4,7)

Figure 9: Effect of number of drifter base-stations
on the total multi-hop connectivity of the entire net-
work (Liverpool Bay)

 0

 0.5

 1

 1.5

 2

 100  150  200  250  300  350  400  450

m
ul

ti-
ho

p 
co

nn
ec

tiv
ity

5-min time-step

depl. loc [16km,8km]
depl. loc [18km,6km]
depl. loc [13km,9km]
depl. loc [23km,4km]

depl. loc [20km,12km]

Figure 10: Effect of deployment location on multi-
hop connectivity (Liverpool Bay)

and 3 base-stations are able to keep 60%, 80% and 90% of
the drifters connected respectively.
Effect of deployment location: The next question that
we addressed is whether multi-hop connectivity is sensitive
to the drifter deployment location. We set the number of
base-stations to 3 and for each deployment location, we eval-
uate multi-hop connectivity over a large number of deploy-
ment periods. Figure 10 shows that, depending on the de-
ployment location, 60% to 100% of drifters are able to relay
their readings to the end-users through the base-stations.
Multi-hop connectivity is less sensitive to changes in the de-
ployment location than one-hop connectivity. In contrast to
one-hop connectivity that was shown to increase with time
in the first 1.5 days for most deployment locations, multi-
hop connectivity remains relatively stable for all deployment
locations.
Effect of deployment period: The effect of deployment
period on multi-hop connectivity is very similar to the ef-
fect of deployment location. Figure 11 shows multi-hop net-
work connectivity for different deployment periods. Observe
that, depending on the weather at the time that drifters are
deployed, their ability to remain connected varies between
60% and 100%. Multi-hop connectivity remains relatively
constant throughout any of the 1.5-day deployment periods.
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Figure 12: Effect of deployment location on sensing
density (Liverpool Bay)

4.4 Sensing density
Sensing density is defined as the number of connected

drifters within an area of interest ; drifters counted must be
connected directly or indirectly to at least one of the base-
stations. The main distinction between multi-hop connec-
tivity and density is that the former counts the percentage
of connected nodes overall, whereas the latter counts the
number of connected nodes within an area of interest. In
our experiments, the area of interest is of constant size, but
not centered around a fixed location. It is defined as follows:
we deploy 10 drifters and let them be propelled by currents
for 1.5 days. We evaluate the bounding box of their trajec-
tories, and we select as area of interest the square area of
size 15km × 15km = 225km2 centered at the center of the
bounding box. We use the same area of interest to evaluate
sensing uniformity in the next subsection.
Effect of deployment location: Figure 12 shows changes
in sensing density with time, for 5 different deployment loca-
tions. Sensing density is shown to be drastically affected by
the deployment location. For example, by deploying drifters
at [13km, 9km] we manage to keep most of them within the
area of interest for the first day of the experiment, whereas
by deploying them at [23km, 4km] we observe that only 2-
4 drifters remain in the area of interest. Sensing density
may also fluctuate from 1 to 10 drifters within a day for
the same initial drifter deployment (e.g. [20km, 12km]). By
comparing Figures 10 and 12, we see that sensing density
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is more sensitive than multi-hop connectivity to deployment
location.
Effect of deployment period: Figure 13 shows changes
in sensing density with time, for 7 different deployment pe-
riods of 1.5 day each. The effect of deployment period on
sensing density is very similar to the effect of deployment
location discussed above. That is, the number of drifters
within the area of interest fluctuates wildly across different
deployment periods, as well as within a certain deployment
period. If oceanographers are interested in monitoring a par-
ticular coastal area, they must select very carefully both the
deployment location and the deployment period, in order
to obtain a large number of sensor readings from that area.
In the future, it would be interesting to associate weather
conditions on different days, or known current patterns at
certain locations, with the observed sensing density values.

4.5 Sensing uniformity
To quantify sensing uniformity, we adopt the definition of

MRD (Mean Relative Deviation) as discussed in Section 3
and in [12]. In our experiments, we set the side lengths of
each sub-area to be half the side length of the entire area
of interest; we also set the overlapping ratio to half the side
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MRD values 0.8 (star positions), 1.3 (circle posi-
tions) and 1.8 (diamond positions) respectively. The
inner square represents the area of interest and the
outer rectangle represents the minimum bounding
box of drifter trajectories. (Liverpool Bay)
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Figure 16: Effect of deployment location on unifor-
mity (Liverpool Bay)

length of a sub-area. This means that there are 9 sub-areas
within the area of interest. Figure 14 shows how MRD varies
with time in a particular instance of deploying 10 drifters for
1.5 days, with 3 of the 10 drifters acting as base-stations.
MRD values vary between 0.8 and 1.9 during the 1.5 day
period of the experiment.

Figure 15 shows the positions of drifters within the area of
interest in three different time-steps when MRD values are
evaluated to 0.8 (see star positions), 1.3 (see circle positions)
and 1.8 (see diamond positions) respectively. Notice that
the distribution of drifters within the area of interest is not
significantly different for the three MRD values.
Effect of deployment location and deployment pe-
riod: Sensing uniformity fluctuates mildly (between 0.8 and
1.9) with time for several different deployment locations as
shown in Figure 16. However, there is no deployment loca-
tion that consistently yields high or low MRD values during
the 1.5-day period of the experiment. Similarly, Figure 17
shows that MRD values fluctuate mildly (between 0.8 and
1.9) for most deployment periods, and no particular deploy-
ment period yields consistently higher MRD values than oth-
ers.
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5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a new model of ocean moni-

toring using a fleet of drifters passively propelled by surface
currents. These drifters form an adhoc sensor network, they
task their local sensor devices to monitor coastal waters,
and propagate their readings hop-by-hop to a few mobile
base-stations. Our study on network connectivity and sens-
ing coverage of the drifter network led us to the following
conclusions.

For most drifters, their one-hop connectivity increases
sub-linearly with the communication range (instead of quadrat-
ically) revealing non-uniform drifter distribution. Deploy-
ment locations and deployment periods seem to play an im-
portant role in one-hop connectivity.

Multi-hop connectivity is clearly improved by the increase
in the number of available base-station drifters; an average
connectivity of around 60% with one base-station becomes
around 80% with two base-stations and almost 90% with
three base-stations based on our Liverpool Bay measure-
ments. Given a fixed number of base-stations, we observed
that different deployment locations and deployment periods
play an important role in the network’s multi-hop connec-
tivity, with connectivity varying between 60% and 100%.

Sensing density is drastically affected by the deployment
period and by the initial drifter location. Moreover, gener-
ally, the difference between sensing density and network con-
nectivity increases with time, indicating that drifters may
stay highly connected in several cases after a long period of
time (over one day) but this does not necessarily mean that
they are kept inside the corresponding area of interest. Ac-
tually, in most cases, sensing density decreases significantly
after the first 24 hours.

Finally we observed no clear trends showing how deploy-
ment locations and deployment periods influence the values
of sensing uniformity of connected drifters. In fact, the ob-
served differences in uniformity values across different de-
ployment scenarios was shown to be negligible, at least dur-
ing the relatively short simulation periods (1.5 days).

In the future, we plan to verify our findings by deploying
a real network of drifters and investigating the communi-
cation connectivity and sensing coverage in a real scenario.
After verifying our findings, we would like to take them into
account in designing routing and in-network processing al-
gorithms that are particularly tailored for ocean monitor-

ing applications. This will lead us to investigate important
tradeoffs between delay, communication cost and reliability
of disseminating sensor data from drifters to end-users.
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