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Abstract

Wireless sensor networks provide an advanced platform
to observe the physical world. Different users may be in-
terested in different events derived from a same spatial phe-
nomenon. The constrained and noisy environment of sensor
networks, however, challenges successful in-network solu-
tions to monitor and detect events and event boundaries.
This paper presents an efficient algorithm, named NED, to
support event and event boundary detection in wireless sen-
sor networks. NED encodes partial event estimation results
into variable length messages exchanged locally among
neighboring nodes. Sensor nodes estimate events and event
boundaries based on moving averages to eliminate noise ef-
fects. Thus, NED is resource-friendly to constrained sensor
networks, and scales well to very large networks. Our ex-
periment results illustrate that NED’s communication cost
is flexible and moderate to different noise levels, and NED
provides high quality estimation results of event and event
boundary detection.

1 Introduction

Wireless sensor networks provide an advanced miniature
computing and sensing platform for more and more applica-
tions. Outstanding capabilities of sensor networks enable us
to observe the physical world in a new way, which is today
almost impossible through traditional means [1].

Except for quantity readings from individual sensor
nodes [2], quality properties of physical phenomena [3]
help us to intuitively understand the occurrences in the
physical world. Qualitative information often require less
resources from networks than quantitative readings, and
therefore are more favorable to constrained sensor net-
works. Users are also more willing to receive reports about
interesting events [4, 5] than a flood of quantitative raw
readings from sensor networks.

Many physical phenomena are spatially continuous.
Events based on a spatial continuous phenomenon, how-
ever, are complex and different. For example, in a house-
hold environment, we may define the place “where the tem-
perature is greater than 200◦C” from the temperature field
as a dangerous event, whereas the region “where the tem-
perature is between 20◦C and 25◦C” is cozy to most people.
The constraints of sensor networks, such as sensing noise,
lossy links and constrained energy resources, challenge ef-
ficient in-network event and event boundary detection algo-
rithms.

This paper presents a novel algorithm, named “Noise-
tolerated Event and Event Boundary Detection (NED)”, for
constrained wireless sensor networks. NED uses a variable-
length event coding mechanism to save the communication
cost of distributed computation. Based on established sta-
tistical models, NED can eliminate the sensing noise effect
and estimate high-quality event and event boundary detec-
tion results. Furthermore, NED supports arbitrary event
threshold settings on the same phenomenon. NED provides
sensor networks a flexible, efficient and high-quality solu-
tion for in-network event and event-boundary detection.

The remaining parts of this paper are organized as fol-
lows: In Section 2, we explore the related work in the area.
Section 3 introduces preliminary concepts and definitions.
Section 4 proposes the principles and algorithms of NED.
We illustrate our experiment results in Section 5, conclude
in Section 6.

2 Related work

Current work on sensor networks focuses on the retrieval
of quantitative data from individual sensor nodes. High-
level systems, such as sensor database management systems
[2, 6, 7, 8], are available to support declarative query lan-
guages for sensor readings. Current sensor DBMSs also
support complex queries, such as aggregation [9, 7] and spa-
tial aggregation queries [10]. [3] provides a framework to



extract qualitative information in sensor networks. Based
on a qualitative model, sensor networks are structured into
triangular irregular networks (TIN) to support in-network
query processing and qualitative information deriving. [3]
also presents an algorithm to maintain and adapt the net-
work topology to changes in the physical world. To esti-
mate the local event information, however, is not discussed
in detail by [3].

In-network event and event boundary detection algo-
rithms [4, 5, 11] are important foundations for qualitative
queries in sensor networks. [4] presents a distributed al-
gorithm based on Bayesian theory. Event estimations are
encoded into binary values, and exchanged among neigh-
boring sensor nodes. A sensor node counts the vote for
event, and compares the number with a predefined thresh-
old to estimate the event status. [4] proves that the opti-
mal decision should be made based on majority votes. The
performance of the majority voting algorithm, however, is
sensible to noise, although its communication cost is inex-
pensive. [5] provides another distributed algorithm based
on the moving median method, in which sensor nodes ex-
change their sensor readings in float values among neigh-
bors. The median reading is assumed to be the local average
value of the underlying spatial phenomenon. Several statis-
tical tests are applied to pick out the outliers first and then
estimate the locations of event boundaries. The communi-
cation cost of the algorithm in [5], nevertheless, is 32 times
or more higher than the cost of majority voting algorithm
[4]. [11] uses a Quad-tree based algorithm to detect and
approximate event boundaries. However, the tree pruning
operation requires a high demand on resource consumption.
On the other hand, different applications would define dif-
ferent events based on different threshold settings even over
a same spatial continuous phenomenon. The algorithm in
[5, 11] fails to estimate the boundary of such events since
the algorithm’s assumption that there is a detectable sharp
change between event regions and non-event regions fails
for spatially continuous phenomena.

3 Preliminaries

3.1 Phenomena and events

Although the real world is a 3D spatial world, in this
paper, we model the world as a 2D space, R2, which can
satisfy most applications. A phenomenon is a spatial scalar
field that represents the variation of a scalar property over a
region of 2D space. A spatial field is a function from space
coordinates to a scalar property. Formally, given a spatial
framework S and a class of scalar values V , a spatial scalar
field is a function F whose domain is S and codomain is V
[3].

Definition 1 Similarly to [3], in this paper, we define a phe-
nomena as,

Y : R2 → R. (1)

Many phenomena are spatially continuous. In other words,
the change of the scalar value is gradual over the space, and
the first derivative of the phenomenon exists everywhere in
the 2D space. As shown by Eq.1, we shall index the phe-
nomena, Y , by a 2D point, p, to the phenomena reading,
Y (p) at the specific spatial point.

The scalar value of a phenomenon provides a quantita-
tive description of space based on which we can derive qual-
itative information. As stated in [12], quantitative properties
of space form a large, continuous domain, often modelled
as real numbers (e.g., Eq.1), whereas qualitative properties
form a small, discrete domain, often modelled as binary val-
ues.

Definition 2 In this paper we model an event as a qualita-
tive aspect of space, and define the event, E, at point p as
following.

E(p) =

{
1, if Y (p) � T

0, else
(2)

In Eq.2, T is a predefined scalar threshold value, which
derives the event based on the phenomenon reading at the
point p. If Y is a temperature field, then E based on
T = 200◦C defines a fire event. Users can define more com-
plex events based on Eq.2, such as a “cozy event”, Cozy(),
where the temperature is between 20◦C and 25◦C, defined
as,Cozy(p) = AND(E1(p), NOT (E2(p))). Here E1 is
defined by the threshold, T1 = 20◦C, and E2 is defined
by T2 = 25◦C.

The boundary of an event is another type of qualitative
information which separates the event space from the non-
event space. An event boundary describes important infor-
mation about an event, such as the shape, the size and the
location of the event. The event threshold, T , provides a
natural choice for boundary since the phenomenon is spa-
tially continuous.

Definition 3 Therefore, we define the boundary, B(), as
following.

B(p) =

{
1, if Y (p) = T

0, else
(3)

3.2 Sensor networks

3.2.1 Constraints of sensor networks

Several factors constrain sensor networks as stated by[13].

• The energy source of sensor nodes are very limited. In
real applications, it is inconvenient or even impossible



to replace the batteries of sensor nodes, which makes
the problem more severe.

• The communication costs are by far higher than other
resource consumptions in sensor nodes. For example,
on Berkeley MIC2 model, transmitting one bit of data
consumes as much as computing 800 commands on
board.

• The communication range between sensor nodes are
limited, typically in tens of meters.

Those factors make sensor networks in favor of localized
data processing.

3.2.2 Noisy sensor readings

In this paper, we use si to indicate a sensor node, i. Some-
times, si also represents the 2D location of the sensor node.
The reading of sensor si on the underlying phenomena is
modelled as follows:

R(si) = Y (si) + ε (4)

Eq.4 reveals that the sensor reading, R(si), is affected by
noise. A common model of the error term assumes ε is
a white normal random variable, ε = N(0, σ2). In other
words, the errors of different sensors are independent, but
the variance is fixed because of the uniform manufacture of
sensors, and the readings of sensors are unbiased to the real
phenomenon.

3.3 In-network event detection

In-network event and event boundary detection, like
other in-network qualitative information processing [3], at-
tracts sensor network applications in different ways. First,
the processing and communication cost of qualitative in-
formation are resource friendly to constrained sensor net-
works, since the data requirement of qualitative information
is cheaper than that of quantitative data, as we can see from
Eq.1 and Eq.2. Second, qualitative information is more
meaningful than simple quantitative data. In-network event
and event boundary detection can relax network burdens in
both terms of communication and computation costs.

The constrains of sensor networks, however, challenge
efficient in-network event and event boundary detection al-
gorithms. A simple translation from quantitative readings
into event detection results has to face the faulty results
because of sensing noises. NED, on the other hand, in-
network estimates event and event boundary against the ef-
fects of noise.

4 NED

4.1 Foundation of NED

In a dense sensor network deployment, it is impractical
and unnecessary to construct a fully connected sensor net-
work due to the constrained resources. Sensor networks
favor localized data processing to relax the resource con-
sumption.

Assumption 1 In this paper, we assume that sensor nodes
can hear from each other in a certain distance, and define
the neighboring node set of a sensor node, si, as,

N(si) = {sj |si can directly hear from sj}. (5)

The sensor node, si, can only receive detailed readings from
its neighbors, N(si).

Assumption 2 In this paper, we assume the noise term, ε,
is a white normal noise N(0, σ2) as stated in Eq.4.

Assumption 3 This paper assumes the underlying phe-
nomena is a spatial continuous phenomena. We also as-
sume the phenomena is isotropic and stationary.

Assumption 4 This paper assumes the sensor nodes in
N(si) are evenly distributed around the location of node
si.

4.2 Coding events

To process distributed events and event boundary detec-
tion algorithms, sensor nodes need to encode event estima-
tion results into digital formats. In [4], sensor nodes uses
a binary variable (1 bit) to represent a local event detec-
tion result, while sensor nodes encode a event reading as a
float value (32 bits) in [5]. The binary event estimation is
resource-efficient to constrained sensor networks, whereas
the estimation result based on float values are more precise
at the cost of significantly increasing the burden on net-
works.

The probability density of a normal random variable
concentrates around the the mean value. For a normal
variable, N(µ, σ2), 95% probability falls within the range
[µ− 1.96σ, µ+ 1.96σ]. Since the sensing error ,ε , is a nor-
mal white noise (assumption 2), sensor readings have very
different certainty powers on local event estimation results.
If a sensor reading is much greater than the threshold T
(e.g., the distance to the threshold is greater than 1.96σ), the
event should be a significant event (at the certainty greater
than 95%). Similarly, a sensor node may detect significant
non-event (i.e., T −R(si) > 1.96σ) and insignificant event
readings (i.e., |T −R(si)| � 1.96σ).



(a) Significant
Event

(b) Insignificant Event

Figure 1. Event coding

To balance the communication cost and the estimation
quality, NED uses a variable length coding mechanism
to represent partial estimation results of individual sensor
nodes as shown by Fig.1. Firstly, users set a significant
level for NED according to different application require-
ments. In this paper, we use a general setting, 95%, in all
examples and experiments. If a sensor node detects a signif-
icant event or a significant non-event reading, the node uses
2 bits of message to represent its reading. As explained by
Fig.1(a), the first bit is a flag which is set to be 0 for sig-
nificant event or non-event, and the second bit indicates the
event estimation (i.e., 1 for a event, 0 for a non-event). If a
sensor observes an insignificant event (i.e., the reading falls
within the [1.96σ, 1.96σ] range) , the node sets the flag to 1
and requires additional 32 bits to convey the original sensor
reading, as shown by Fig.8.

4.3 Event and boundary detection

Based on the underlying assumptions, NED applies the
moving mean method to estimate the phenomena readings
at individual sensor nodes’ locations as following.

Ŷ (si) = mean(R(N(si))) (6)

In Eq.6, mean(R(N(si))) is defined as,

mean(R(N(si))) =
∑

(R(sj))
n

, where sj ∈ N(si). (7)

In Eq.7, n indicates the number of nodes in the neighboring
node set, N(si). Another general used model is the moving
median model which uses the median reading of neighbor-
ing nodes instead of the mean reading [5] to estimate the lo-
cal average. The median value has several advantages (e.g.,
the median value is robust against outliers). Estimation re-
sults based on the moving mean method, however, are better
than the results based on moving medians because of sev-
eral facts. The first reason is that in sensor networks the
number of neighboring nodes are limited. Second, underly-
ing spatial phenomena are varying over space, and sensing
noise are white normal variables. Our simulation results in
section 5 also confirm our expectations.

NED uses binary values to indicate significant event and
non-event readings. Before running the moving average
method to remove noise effects, sensor nodes have to restore
the float readings from binary values. After receiving mes-
sages from neighboring nodes, a node restores a significant
event message into the phenomena reading, T +1.96σ, and
a significant non-event into T − 1.96σ according to the sig-
nificant level, 95%. Sensor nodes then estimate local events,
Ê(si), based on the moving mean results as following.

Ê(si) =

{
1, if Ŷ (si) � T

0, else
(8)

Since the variance of noise, σ2, is pre-known and fixed,
typically provided by the specification of sensing devices,
Eq.6 is an estimation of local mean with the new estimated
variance defined by Eq.9.

σ̂2 =
σ2

n
(9)

We cannot directly apply Eq.3 based on the estimated lo-
cal phenomenon reading, Ŷ (si). The first reason is that sen-
sor nodes may not be located on the exact boundary points.
The second reason is the noise effects. Therefore, NED uses
Eq.10 to estimate the boundary, B̂(), for the 95% significant
level.

B̂(si) =

{
1, if T ∈ [Ŷ (si) − 1.96σ̂, Ŷ (si) + 1.96σ̂]
0, else

(10)
B̂(si) in Eq.10 indicates whether the sensor node, si, has
the 95% confidence that the node is located on the boundary
Y (si) = T . NED’s coding mechanism symmetrically trims
the sensor readings around the event threshold, T . Since the
phenomenon is isotropic (i.e., there is no directional differ-
ence) and stationary (i.e., the change of phenomenon read-
ings is scaled by the Euclidean distance), and the sensor
nodes are evenly distributed, the estimated readings of sen-
sor nodes around the event boundary are very close to the
event threshold T . Thus in NED, the nodes around a event
boundary have higher chances to report the boundary.

4.4 NED algorithm

Tab.1 illustrates the pseudocodes of NED. Since the vari-
ance of sensing noise is pre-known, we assume the variance
value, σ2, is cached by each node. In the beginning, users
set the significant level, SigLevel, according to which sen-
sor nodes set the confidence range. In practice, the time is
divided into rounds for sensor nodes to communicate with
each other [7]. In each round, each sensor node encodes
its sensor reading into event messages as shown by Fig.1.
After receiving neighboring messages, sensor nodes restore



significant event and non-event messages (binary values)
into sensor reading values (float values), average neighbors’
readings to eliminate noise effects, and estimate the event
and event boundary based on Eq.8 and Eq.10. Finally, sen-
sor nodes report event and event boundary estimation re-
sults accordingly.

4.5 Discussion

NED ignores the detailed locations of neighboring
nodes. If the variation of a phenomena is large, and sensor
nodes are not evenly distributed one can also apply differ-
ent weights on neighboring readings. For example, a weight
can be a function of Euclidean distances between sensor
nodes. Weighting readings, however, increases the message
size because of additional location information, and further-
more aggravates the burden of networks.

If a phenomena changes very rapidly like a step function
over space, as assumed by [5] that phenomenon readings are
µ1 in event regions and µ2 in non-event regions, the bound-
ary threshold T can be any values in (µ1, µ2) to separate
events and non-events. NED can use the boundary thresh-
old T = µ2+µ2

2 to keep the symmetry of sensor readings
around the threshold, T , and detect this type of phenomena.

For spatially continuous phenomena, the variable length
coding mechanism of NED allows nodes far from event
boundaries to communicate by only 2-bit messages. Those
nodes close to event boundaries use 33-bit messages to
achieve high quality estimations. Hence, NED is resource
efficient in the constrained environment of sensor networks.

5 Experimental results

We simulated NED in MatLab. To test the performance
of NED, we used a graphic tool to generate several gray-
level graphics and assumed the graylevel values as the un-
derlying phenomenon. All graylevel values are from 0,
pure white, to 1, pure black, without losing any generaliza-
tion. The unit distance is 1 pixel in our experiments. Since
this paper focuses on continuous phenomenon, a smooth

Table 1. Algorithm pseudocodes
1. delta = setSignificantLevel(SigLevel);
2. r = getMySensorReading();
3. msg = codeEvent(r,T);
4. msgList = communicateToNeighbors(msg);
5. readingList = restore(msgList);
6. avg = estAvg(readingList);
7. sqrtVar = estSqrtVar(readingList);
8. if (avg � T) estEvent = true;
9. else estEvent = false;

10. if (T � avg-delta*sqrtVar) AND (T � avg+delta*sqrtVar)
estBoundary = true;

11. else estBoundary = false;
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Figure 2. A synthetic phenomenon

101 × 101 graphic, as shown by Fig.2, is used by most of
our experiments. The phenomenon illustrated by Fig.2(a)
continuously changes over the space. The cross section of
phenomenon at Y = 50 clearly indicates the continuity of
the phenomenon as shown by Fig.2(b).

We distributed sensor nodes across the graphic and took
individual pixel gray values as the sensor readings, and ap-
ply a normal noise to each sensor reading. We also assume
sensor nodes to be able to communicate with each other
within the distance 5.

5.1 Event and boundary detection
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(b) σ = 0.2
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(d) σ = 0.4

Figure 3. Event detection with T = 0.5

First, we distribute sensor nodes into a grid layout where
the distance between neighboring two nodes is 3. Fig.3
shows the event detection results based on T = 0.5 with
different levels of noise, where the event is located inside



the solid line. The dots indicate the sensor nodes detecting
an event whereas the circles indicates the nodes reporting
non-events. Fig.3(a)-3(d) illustrate the results with noise
variance settings σ = 0.1 to σ = 0.4 respectively. As we
can see, NED almost perfectly estimates the event distribu-
tion with the noise, N(0, 0.12). Although the noises with
σ = 0.4 degrade the estimation result, the estimation qual-
ity is still acceptable.
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(d) σ = 0.4

Figure 4. Boundary detection with T = 0.5

Another function of NED is the boundary detection
as shown by Fig.4 where the solid line indicates the ex-
act boundary and the circles are the sensor nodes report-
ing the boundary. Fig.4(a)-4(d) show the boundary de-
tection results with noise variance settings σ = 0.1 to
σ = 0.4, respectively. The boundary detection result based
on N(0, 0.12) is the best, and the result gets deteriorated
while the noise variance increases. Since the noise level,
σ = 0.4, is very high compared with the boundary T = 0.5,
the result of σ = 0.4 is reasonable. One may apply a second
round boundary estimation based on the estimated event re-
sults as shown by Fig.3. A second round estimation, how-
ever, may oversmooth the results and therefore miss some
boundaries.

One of the advantages of NED is that it supports arbi-
trary event boundary settings. Fig.5 shows the boundary
detection results based on different threshold settings with
the noise setting σ = 0.1. For the moderate noise, NED
shows very good results. The sensor nodes around the event
boundaries successfully report the location of boundaries.
Fig.5 indicates that the size of event Y (p) � 0.8 is smaller
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(b) Event on T = 0.6
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(d) Event on T = 0.8

Figure 5. Detection on arbitrary thresholds

than the size of event Y (p) � 0.6, as we can observe from
Fig.2.
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(a) Boundary detection
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(b) Event detection

Figure 6. Detection based on random layouts

We run another test to simulate mobile sensor nodes.
As illustrated by Fig.6, we randomly select 1, 500 pixels
from the simulated phenomenon to provide the locations
and readings of sensor nodes. A white normal noise with
variance σ = 0.1 is also applied to each reading. As shown
by Fig.6(a), NED returns a very good event boundary esti-
mation based on the threshold T = 0.5 Fig.6(b) illustrates
that the nodes almost perfectly report the event status.

We also use a binary phenomenon as shown by Fig.7(a)
to test the performance of NED on sharply changing phe-
nomena. The cross section at y = 30, Fig.7(b), shows that
the phenomenon is a step function across the space. We set
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(c) NED boundary detection
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(d) NED event detection

Figure 7. NED results on a binary phe-
nomenon

the boundary threshold T = 0.5 and the noise variance as
σ = 0.2 to test the performance of NED. Fig.7(c) shows
that the sensor nodes successfully report the event bound-
ary, and the nodes almost perfectly estimate the event stati
as illustrated by Fig.7(d). Overall, Fig.7 exemplifies the ef-
fectiveness of NED on discontinuous phenomena.

5.2 Estimation quality of NED

Figure 8. Estimation Quality

We tested different methods 5 times to get their average
estimation performance. Fig.8 illustrates the average num-
ber of sensor nodes successfully reporting the local event
status for T = 0.5 with different noise variance settings
based on the grid-like network layout. Most nodes far away

(a) Average size of sent data

(b) Average size of received data

Figure 9. Data requirement of NED

the boundary have very small chances to make faulty esti-
mation results, so the success rates of all methods are over
90%. We also test the performance of moving mean and
median methods without transforming significant float read-
ings into binary values. As shown by Fig.8, the estima-
tion results of NED and moving mean method are almost
the same and the best among those competitors. The mov-
ing median and majority voting methods report more faulty
events than NED, because the limited number of neighbor-
ing nodes restricts the performance of moving median and
majority voting methods.

5.3 Cost of NED

Wireless radio communication is the main bottleneck of
sensor networks. We run NED 5 times to record the aver-
age data requirements for the event T = 0.5 with differ-
ent noise variance settings based on the grid-like network
layout, as shown by Fig.9. As explained by Fig.9(a), ma-
jority voting method only needs 1 bit to encode the event
whereas normal moving mean method requires 32 bits for
sensor readings. The average size of received data, how-
ever, depends not only on particular algorithms, but also on
the wireless radio communication range. Since we assume



sensor nodes can hear from each other in the distance of 5,
the average size of received data, as shown by Fig.9(b), is
greater than the size of sent data, but still explains similar
results to Fig.9(a). The data requirement of NED is between
the two methods, and closer to the requirement of majority
voting method for smaller noise interferences.

Our experiment results show very good event and event
boundary estimation results of NED. Compared with other
available methods, NED is resource-efficient to sensor net-
works and can adapt the data requirements to different noise
levels.

6 Conclusion and future work

This paper presents a novel distributed event detec-
tion algorithm, NED, for sensor networks. NED supports
event and event boundary detection based on arbitrary event
threshold settings. Although NED focuses on spatial con-
tinuous phenomena, our experiment results show the effec-
tiveness of NED on discontinuous phenomena. The exper-
iment results also illustrate the high-quality estimation re-
sults of NED and the high-efficiency of NED in constrained
wireless sensor networks.

Future work includes the design of an efficient geometry
data structure for event boundaries to represent them effi-
ciently.
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