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Abstract

Very long-running queries in database systems are

not uncommon in non-traditional application domains

such as image processing or data warehousing analysis.

Query optimization, therefore, is important. However,

estimates of the query characteristics before query exe-

cution are usually inaccurate. Further, system con�gu-

ration and resource availability may change during long

evaluation period. As a result, queries are often eval-

uated with sub-optimal plan con�gurations. To rem-

edy this situation, we have designed a novel approach

to re-optimize suboptimal query plan con�gurations on-

the-y with Conquest | an extensible and distributed

query processing system. A dynamic optimizer con-

siders recon�guration cost as well as execution cost in

determining the best query plan con�guration. Experi-

mental results are presented.

1 Introduction

Parallelism is important in today's database query
processing. Very long-running queries require paral-
lel processing to deliver reasonable performance due
to the growing demands for decision support and data
mining against massive databases. A workstation farm
is a common environment to support parallel comput-
ing. During a long query evaluation, changes of sys-
tem con�guration and resource availability are often
expected. Furthermore, a priori estimates of the query
characteristics against large datasets, e.g., selectivity,
are often coarse and inaccurate. As a consequence, tra-
ditional optimization methods that optimize a query
once before execution are not totally satisfactory. To
remedy this situation, we propose a novel approach to
dynamically re-optimize suboptimal query plan con�g-
urations and thereby signi�cantly improving evaluation
performance of long-running queries. The objective is

to take advantage of up-to-date cost estimates which
come from more precise information on query statis-
tics (e.g., selectivity of a quali�cation), as well as to
adapt to changing system con�guration and resource
availability (e.g., availability of machines, other work-
loads, etc.).

We have implemented an extensible query process-
ing system called Conquest (CONcurrent QUEries over
Space and Time) which handles complex scienti�c
queries involving computationally expensive calcula-
tions on large geo-scienti�c datasets stored in di�erent
formats and managed by many di�erent autonomous
storage subsystems [23]. A parallel query execution
plan (QEP) in Conquest speci�es the parallel pro-
cess of manipulating data and producing results for
a submitted query. The subtasks of the QEP are
called operators. The con�guration of a QEP refers
to the composition of operators, input-output commu-
nications among operators, degree of data parallelism
and operator assignment to di�erent processors. Con-
quest supports operators that compute a function in
an object-at-a-time fashion [6]. This design resembles
Volcano's Open-Next-Close query evaluation paradigm
[7] [8] that supports data stream processing. Each ex-
ecution of an operator is called an iteration.

To dynamically determine the best QEP con�g-
uration, an optimizer must �rst know when a re-
optimization should be performed. Di�erent from the
approach proposed in [16], which re-optimizes a query
plan only when a sub-tree of the QEP is completely
done (hence no pipelined parallelism is considered in
their model), and the approach suggested in [25], which
changes the order of join operations if unexpected net-
work delays happen, we use a triggering approach that
allows more general query re-optimization in an en-
vironment fully supporting parallelism. Built-in and
user-de�ned trigger rules are evaluated at run-time
so that the dynamic optimizer actively performs re-
optimization. Dynamic re-optimization mechanisms



monitor situations of interest and, when they occur,
trigger an appropriate response in a timely manner.
Trigger rules are of the well-known event-condition-

action form [4] which is straightforward but power-
ful. The triggering approach is extensible and is es-
pecially appropriate in an extensible database system,
e.g., object-relational DBMS [13][14][24], as users can
arbitrarily introduce new trigger rules. We have dis-
cussed the procedure of modifying a QEP con�guration
on the y in [19][20]. In this paper, we focus on present-
ing a triggered dynamic re-optimization method with
which the optimizer can promptly react to changes to
the execution environment and/or better knowledge of
data characteristics at run-time.

1.1 Motivating Example

To better motivate the problem of suboptimal query
plans, we performed the following experiment in a
workstation farm environment. A distributed version
of cyclone tracking, an example query drawn from
the geo-scienti�c application domain, has been imple-
mented. Cyclones are indicated by local minima in at-
mospheric pressure at the earth's surface. We use Scan
operators to retrieve spatio-temporal surface pressure
data and wind records for the prescribed time interval.
Sea level pressure records are passed to a minima oper-
ator that extracts the location of local minimum in sea
level pressure data with certain constraints and a track
operator connects points to form tracks using auxiliary
information such as wind direction.

Three SunMicro workstations, X (\margarita",
Ultra-10 with 128 MB memory),Y (\greedy", Ultra-30
with 384 MB memory) and Z (\mint", Ultra-30 with
128 MB memory), each of which is running SUNOS
5.6, JDK1.1.6 and OrbixWeb3.0, were used in this ex-
periment. At the query start up time, both machine
Y and Z were with heavy workload. Only machine X
was lightly loaded and 98% CPU time could be as-
signed for this query evaluation. After half hour, most
CPU intensive jobs on machine Y were done. There-
fore, machine Y became available for query evaluation.
Machine Z was still extremely heavily loaded for �fteen
minutes more. Twenty minutes after all jobs on ma-
chine Z were done, machine X happened to be moder-
ately loaded because of some planned jobs, which took
about 80 minutes to perform, hence machine X had to
spend most CPU time for those jobs. During the eval-
uation, some occasional jobs, e.g., web browsing, text
editing, came in and lasted for less than 2 minutes.

For comparison, we executed three valid execution
plans (Figure 1) under the same workload change. We
used UCLA AGCM climate model data sets that con-
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Figure 1. Three query execution plan config-
urations for cyclone tracking

tain sea level pressure and wind records from 1980 to
1989, whose storage size is about 1.6 GB. The overall
execution time was approximately 730 minutes for plan
A, 244 minutes for plan B and 217 minutes for plan C
respectively. Though query evaluation of plan-B out-
performed the execution of plan-A, it is worse than the
execution of plan-C. However, it was unlikely the plan-
C would be chosen at start-up time since workload on
both machine Y and machine Z was high at that mo-
ment. Therefore, we can expect that a query execution
which performs with plan-A at start-up time and then
changes to plan-B or plan-C at an appropriate time
will deliver better performance.

2 Overview

2.1 Dynamic Re-optimization

Dynamic optimization mechanisms use up-to-date
system con�guration, system loads, and query execu-



tion information to re-optimize query execution plans
on-the-y. Briey, system performance and query char-
acteristic metrics are periodically measured during run
time. These measured values are used to project the
performance trend of the residual query execution. If
it is estimated that a new QEP con�guration, di�erent
from the current con�guration, will lead to a signi�cant
improvement in query performance, a migration strat-
egy from the current plan con�guration to the proposed
plan is determined and then carried out.

2.1.1 Run-time Measurement

The problem of analyzing the performance of a par-
allel QEP can be described in two parts: performance
instrumentation and performance analysis. The perfor-
mance instrumentation is concerned with how to e�-
ciently collect relevant statistics about a computation,
while the analysis part focuses on evaluating a variety
of statistics and providing useful information (e.g., pre-
dicted workload and network tra�c in the near future)
to the dynamic optimizer.

We consider two types of performance instrumenta-
tion: system instrumentation and query instrumenta-

tion. System instrumentation collects statistics on the
execution environment such as CPU workload, network
tra�c, swap space and resource availability. System in-
strumentation is independent of query execution plans.
In other words, di�erent QEPs share the same system
statistics and predictions. Query instrumentation fo-
cuses on the estimation of query characteristics. For
example, the data selectivities of operators are com-
puted on the y.

2.1.2 Dynamic Re-optimization

We use a triggering approach to implement dynamic re-
optimization. When system events occur, e.g., system
parameters are measured and updated in the catalog,
if particular conditions are satis�ed, then the dynamic
optimizer is invoked to consider whether a better per-
formance can be achieved by reconstructing the query
plan con�guration. For example, the system is in-
formed that one workstation participating in the query
evaluation is going to be shutdown for regular main-
tenance, the dynamic optimizer will have to consider
where the operator instances running on that machine
should be migrated to.

The dynamic optimizer considers the recon�gura-
tion cost in addition to the execution cost of the re-
mainder of the query when making decision about
recon�guration. This additional cost dimension in-
creases the complexity of searching for the best query
plan. For instance, a plan with slightly higher

residual execution cost (based on current estimates
of system con�guration and query characteristics)
but much lower recon�guration cost (from the cur-
rent QEP con�guration) could be the better choice
since it allows more e�cient plan migration. There-
fore, only when residualExecutionCost(newQEP ) +

reconfigurationCost(currentQEP; newQEP ) +

threshold < residualExecutionCost(currentQEP ) re-
turns a true value, plan recon�guration is performed,
where threshold is a heuristic value pre-de�ned by sys-
tem developers to guarantee signi�cant performance
improvement.

2.1.3 Query Plan Recon�guration

A query plan recon�guration, which is performed by a
recon�gurator, yields a new, semantically correct con-
�guration for the same query. The process of query
plan modi�cation consists of �ve phases: (1) opera-

tor coordination, which brings operators into a state in
which recon�guration can be performed without caus-
ing deadlock or missing information; (2) state capture,
which saves the state information including bu�ered
input and output records and execution context of the
query execution; (3) plan modi�cation, which changes
the con�guration of the existing query plan; (4) state
restoration, which initializes the execution environment
for the modi�ed QEP, including moving bu�ered input
and output records and reinstating scratchpad context
(e.g., with check-point records or other mechanisms to
be described later); and (5) computation resumption,
which restarts the computation after recon�guration.
Phases are executed in parallel whenever possible and
options for implementing each phase are chosen based
on operator semantics and respective costs.

2.2 Reconfiguration Types

Recon�guration refers to the change from one query
plan con�guration to another. We here list consid-
ered recon�guration types. The details can be found
in [19]. Operator Instance Relocation refers to re-
assigning an operator instance from one processor to
another. Data stream re-partitioning modi�es the
distribution policy for a data stream that feeds di�erent
clones of an operator. Generally, each clone runs on a
di�erent processor, processes a portion of data stream
and maintains individual scratchpad memory. Modi-

�cation of the degree of data parallelism changes
the number of clones of an operator. Operator Re-
placement uses a semantically equivalent but di�erent
algorithm in place of an implementation. Algebraic
transformation re-selects an semantically equivalent
algebraic expression.



3 Triggered Dynamic Re-Optimization

A triggered dynamic re-optimization monitors the
change of system parameters and query characteristics
so that an appropriate response can be triggered in a
timely manner. Trigger rules are of form ON event

WHEN condition CONSIDER action (i.e., <E-C-A
speci�cation>)[4]. This allows trigger rules to be �red
when an event of interest occurs, e.g., estimates of sys-
tem parameters and query characteristics are updated,
if the condition is satis�ed, the dynamic optimizer is
invoked to consider possible recon�gurations.

3.1 Trigger Rules

3.1.1 Classi�cation of Triggers

System Triggers are rules that are common to all
submitted queries and independent of any query plan
execution. For example, whenever a workstation is to
be shutdown, all operator instances located on this ma-
chine, no matter what queries these operator instances
are for, have to be migrated to other machines. On the
other hand, newly available resources might also trig-
ger the re-optimization of running QEPs. A system
trigger looks like:

DEFINE REOPTIMIZATION TRIGGER rule1 FOR SYSTEM

<E-C-A specification>

QEP Triggers are rules that are common to all
query execution plans. In contrast to system triggers,
these trigger rules are associated with a particular QEP
execution. For example, in Conquest, bu�er queues
are used to connect multiple producer operator clones
to multiple consumer operator clones. If it is found
that a bu�er queue is empty most of the time, which
can be due to a slow producer or a fast consumer, re-
optimization should be triggered to adapt to this sit-
uation. A possible reaction is to adjust the data re-
distribution policy among the producer clones and the
consumer clones. These rules look like:

DEFINE REOPTIMIZATION TRIGGER rule2 FOR QEP

<E-C-A specification>

Operator Triggers reect the sensitivity of oper-
ators to system parameters and data characteristics.
They can be further divided into two sub-classes:

(1) Built-in Operator Triggers are with respect
to library operators. An example is the table scan op-
erator. If data selectivity is small and an index ex-
ists, the operator index-scan is used. A built-in trigger
might specify the optimizer should consider replacing
the index-scan operator with the sequential-scan oper-
ator when the measured selectivity is higher, by more
than some threshold, than the estimated selectivity.

(2) User-De�ned Operator Triggers are de�ned
by Conquest application developers for user-de�ned op-
erators. With user-de�ned triggers, the dynamic op-
timizer can evaluate whether it is worthwhile to re-
optimize the QEP (with respect to particular user-
de�ned operators) under certain circumstances.

Suppose we have a minima operator. An operator
trigger rule associated with minima looks like:

DEFINE REOPTIMIZATION TRIGGER rule3

FOR OPERATOR minima

<E-C-A specification>

3.1.2 Speci�cation of Triggers

Triggering Events The most common triggering
events are updates to the system parameter measure-
ment (e.g., workload, communication bandwidth) and
data characteristics (e.g., operator selectivities). These
events happen according to the measurement policy
speci�ed for the performance detector. For example, a
periodic policy can be used so that performance metrics
are measured and updated every 5 seconds. The Con-
quest triggering events include WORKLOAD, SWAP-
MEMORY, COMMUNICATION BANDWIDTH, and
SELECTIVITY, etc.

A triggering event can also be speci�ed as a par-
ticular time at which a known or expected change is
scheduled. For example, a discounted broker company
such as Charles Schwab or Fidelity provides web trad-
ing facilities for customers. The details of customer
daily transactions are updated to individual accounts
in a batch mode at a scheduled time (only the sum-
mary information is updated on-line). Executing such
a daily batch process requires a certain amount of sys-
tem resources. If a long-running query, e.g., regression
analysis of Dow Jones blue-chips in ten years, will be
in the middle of execution when such a scheduled job
starts, then this query plan should be re-optimized at
a particular time.

Triggering events can also be due to an external
command issued directly from the system administra-
tor. Whenever the system administrator determines
that it is necessary to re-optimize the currently exe-
cuting plan con�guration, a command can be sent to
the Conquest query manager which interprets the com-
mand and raises a triggering event.

Re-Optimization Conditions The condition part
of a re-optimization trigger speci�es a predicate over
the performance metrics collected and estimated at
run-time. For example,

DEFINE . . .

ON WORKLOAD



WHEN (CURRENT > 1.2*START) LASTING 10 SECONDS

. . .

speci�es a re-optimization condition that the work-
load has been increased at least 20% since last QEP
(re-)optimization and the workload has been staying
in such a higher level for more than 10 seconds. If the
condition part of any re-optimization trigger is satis-
�ed, the dynamic optimizer is invoked for query plan
re-optimization.

Recon�guration Actions The action part of a re-
optimization trigger speci�es the suggested recon�gu-
ration actions. The dynamic optimizer considers these
suggested recon�guration forms to search for the best
execution plan under the most updated estimates of
system parameters and data characteristics. With
respect to the considered recon�guration forms, the
suggested recon�guration action can be: RELOCA-
TION, REPARTITION, RECLONING, REPLACE-
MENT, and TRANSFORMATION.

An Example of Trigger Speci�cation

DEFINE OPTIMIZATION TRIGGER reopt_minima

FOR OPERATOR minima

ON WORKLOAD

WHEN (CURRENT > 1.2*START) LASTING 10 SECONDS

CONSIDER RELOCATION, RECLONING;

The above example speci�es a user-de�ned opti-
mization trigger named reopt minima associated with
the user-de�ned operator minima. During execution,
the machine on which (a clone of) this operator is being
executed is monitored, if the workload has increased 20
percent since last query optimization and stays at that
level for more than 10 seconds, the dynamic component
of the optimizer will consider to relocate this operator
clone from one workstation to another or by changing
the number of clones (either increasing or decreasing).
If it is found that a better performance can be achieved,
a recon�guration is going to be performed.

3.1.3 Registration

Trigger rules must be registered before they can be
used. According to their application domain, trigger
rules are grouped into trigger classes of system, QEP
and operators. Each trigger is a �rst-class object in
individual class. No re-optimization trigger can be
in more than one class. Once registered, triggers are
stored in the Conquest system catalog. Users can then
use activate and deactivate command to enable or
disable an individual re-optimization trigger and/or the
whole class of re-optimization triggers. For example,

command deactivate SYSTEM REOPTIMIZA-

TION TRIGGERS disables all triggers in system
class. Triggers are not evaluated unless they are acti-
vated.

3.2 Execution Semantics

The execution semantics of re-optimization triggers
is important since the triggering behavior could be
complex even for a small set of triggers. The �rst is-
sue we need to consider is the granularity of triggering.
There is a choice of �ring the trigger after each system
parameter (or data characteristics) has been updated
or once for the entire set of parameters. Another issue
is whether the dynamic optimizer should be invoked
immediately if one trigger condition is satis�ed or not
invoked until all trigger conditions have been evaluated.
Finally, when the newly de�ned and activated triggers
start to be evaluated is also an issue. In this section,
we describe our approach to run-time trigger evalua-
tion and then the application to query processing with
triggered dynamic re-optimization.

3.2.1 Trigger Evaluation

Not all triggers are relevant to a particular query plan
con�guration. To trigger a dynamic re-optimization,
the system considers only a subset of de�ned and acti-
vated triggers. As we have discussed, re-optimization
triggers are categorized into three classes: system, QEP
and operator. Both system triggers and QEP triggers
are applied to a particular plan con�guration. In addi-
tion, the operator triggers related to the operators used
in the plan con�guration should also be evaluated. All
applied re-optimization triggers compose a trigger set.
Since di�erent plan con�gurations may involve di�er-
ent triggers, such a trigger set must be updated after
each plan recon�guration. The newly de�ned and acti-
vated triggers can then be added to the trigger set and
be considered.

The Conquest trigger manager performs the task of
evaluating re-optimization triggers. The relationships
among events, conditions and actions are illustrated in
Figure 2. For those events due to performance mea-
surement, updated data items (i.e., system parameters
and query characteristics) are loaded into the working
memory. Respective re-optimization triggers are then
evaluated in an arbitrarily order by an execution thread
of the trigger manager. On the other hand, another
trigger evaluation thread maintains a system clock to
examine the maturity of time re-optimization triggers.
Finally, the third execution thread is responsible for
receiving external re-optimization requests re-directed
from the query manager. Each time a re-optimization
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trigger is evaluated, the variables in the condition are
bound to data items in working memory. If a condi-
tion is satis�ed, its associated action results in a de-

ferred re-optimization which means the dynamic opti-
mizer is not immediately executed but waits until all
conditions have been evaluated. Suggested recon�gu-
ration forms of the satis�ed triggers are passed to the
dynamic optimizer. Once the dynamic optimizer has
started, the trigger manager does not respond to any
triggering event until a new con�guration plan starts
or the current plan con�guration is decided to be the
best.

3.2.2 Query Processing

Having introduced the triggering mechanisms, we are
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now ready to describe the query processing with dy-
namic triggered re-optimization (Figure 3):

(1) During query execution, the detector dynami-
cally measures system parameters and data character-
istics as the submitted query is being evaluated with
a particular plan con�guration. Once updated, sys-
tem parameters and data characteristic information are

sent to the trigger manager.
(2) The query agent which monitors the execu-

tion of the submitted query listens to the external re-
optimization command and if there is any, the query
agent redirects such a request to the trigger manager.

(3) The trigger manager maintains three synchro-
nized execution threads to manage di�erent types of
triggering events: one thread performs evaluation of
activated time triggers; another responds the external
re-optimization commands; and the third evaluates ac-
tivated triggers with respect to performance measure-
ment. If any condition is satis�ed, the trigger manager
informs the dynamic optimizer to re-optimize the QEP
with suggested recon�guration forms after all condi-
tions have been evaluated.

(4) Instead of exhaustively searching for the optimal
execution plan for the remainder of the query, the dy-
namic optimizer considers QEP con�gurations based
on the current plan con�guration as well as all possible
recon�guration forms passed from the trigger manager.
The dynamic optimizer determines the best QEP con-
�guration by considering both execution cost and re-
con�guration cost.

(5) If the residual execution cost of the current QEP
con�guration is greater than the sum of (a) the re-
con�guration cost from the current plan to the new
one; (b) the estimated residual execution cost of the
new plan; (c) a threshold which is a heuristic value
to prevent recon�guration that gains insigni�cant per-
formance improvement, the recon�gurator is then re-
quested to perform a cost-e�ective QEP recon�gura-
tion.

We note that it is not easy to determine the thresh-
old value for making recon�guration decision. In
general, a QEP con�guration that involves highly
parameter-sensitive operators may require a lower
threshold while the one with less parameter-sensitive
operators can use a higher threshold to �lter out in-
signi�cant recon�guration potentials.

3.3 Experimental Results

3.4 Experiment I

Recall our motivating example, the distributed ver-
sion of cyclone tracking, an example query drawn from
the geo-scienti�c application domain. When the query
evaluation started, only machine X was lightly loaded
and 98% CPU time could be available for the query
evaluation. Both machine Y and Z were with heavy
workload at that moment. The workload on machine
Y became lighter after half hour as most CPU intensive
jobs on machine Y were done. As a result, machine Y



could be considered to participate in the evaluation.
Fifteen minutes later, machine Z was also available for
evaluating the query. One hour after the query started,
machine X happened to be moderately loaded because
of some planned jobs, which took about 80 minutes
to perform, hence machine X had to spend most CPU
time for those jobs. During the evaluation, some oc-
casional jobs, e.g., web browsing, text editing, came in
but did not last for more than 2 minutes. We assume
that all user tasks have the same execution priority.

With run-time re-optimization, the overall execu-
tion time was approximately 2 hours and 36 minutes,
including 7.5 minutes (approximately 5%) for perform-
ing run-time recon�guration. The plan con�guration
changes during evaluation are shown in Figure 4.

Plan-1

Plan-2

Plan-3

Plan-4

Plan-5

Plan-6

Figure 4. Plan Changes During Cyclone Track-
ing Query Evaluation

For comparison, we executed the three execution
plans presented as our motivating example under the
same emulated workload change but with no dynamic
recon�guration. Plan-A, where all operators were as-
signed to machine X, took 730 minutes. Plan-B and

Plan-C took 244 minutes and 217 minutes respectively
(Figure 5). The improvement was as high as 78% com-
pared to Plan-A, and 36% and 28% compared to Plan-
B and Plan-C. Furthermore, Plan-C can never be cho-
sen by an optimizer that optimizes the query only once
before the execution since the high workload on both
machine Y and Z prevented Plan-C to be chosen. In
contrast, The run-time optimization approach adapts
the query con�guration to the environment so that it
delivered the best performance.
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Figure 5. Experimental Results

As a proof of concept, we implemented dynamic re-
con�guration mechanisms in a straightforward means
which performs each recon�guration step in sequence.
In practice, recon�guration steps should be performed
in parallel. For example, once an operator instance
and its all producers become suspended, its execution
context can be captured immediately without waiting
for the suspension of other operators. Similarly, steps
of new operator instance creation and old operator
instance destruction can be performed with di�erent
threads in parallel. We estimate the recon�guration
cost in our experiment can be decreased at least half
if a parallel recon�gurator is implemented, hence the
dynamic recon�guration more bene�cial.

3.5 Experiment II

The incurred overhead of dynamic query re-
optimization depends on how often QEP recon�gura-
tions occur and how much each QEP recon�guration
costs. The recon�gurations due to \noisy" change of
parameters, which can be de�ned as a sharp but tran-
sient value variation, should be avoided. The trig-
ger manager can preserve bene�ts from dynamic re-
optimization by requiring a minimum duration of the
new value, i.e., the lasting interval.

To study how lasting interval a�ects the perfor-
mance in triggered dynamic re-optimization, we im-
plemented the following experiment with the cyclone



tracking application. A 600 second execution segment,
which is roughly divided into three 200 second periods,
T1, T2 and T3, is examined. During T1, machine X is
lightly loaded (i.e., almost all CPU time can be used
by the given query) while machine Y is fairly loaded
(i.e., about 50% CPU time can be used); thus query
execution plan A in Figure 6 is the best con�guration.
During T2, machineX became extremely heavily loaded
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Figure 6. Query Execution Plans Considered
in Experiment II

and the workload on machine Y is very light. There-
fore, plan B is the best. In T3, both machine X and
machine Y are lightly loaded so that plan C performs
best. Therefore, an ideal query execution with trig-
gered dynamic re-optimization starts with plan A, then
processes with plan B, and ends with plan C. In addi-
tion, these re-optimizations should occur at the start-
ing of T2 and T3 respectively. However, the existence
of noisy changes makes such an ideal situation impossi-
ble. During each execution period, sharp changes (ap-
proximate 20 seconds) occur in the middle of each pe-
riod; hence \incorrect" recon�guration decisions might
be made. To avoid meaningless recon�guration due to
these noisy changes of workload, di�erent lasting inter-
vals are speci�ed in the experiment. We found that if
a lasting interval was de�ned too short, dynamic re-
optimization would be too sensitive to any changes to

system parameters. However, a long lasting interval
would delay a re-optimization and make dynamic query
re-optimization less bene�cial.

We evaluated the performance by measuring the
throughput with di�erent lasting interval speci�ca-
tions. We also adjust recon�guration cost (by calling
additional computation loops) to observe its inuence.
Our experimental result is shown in Figure 7 where
(a) shows the throughput variations when lasting in-
terval values (marked points in the �gure) vary from
0 to 600 seconds and (b) enlarges the portion of the
�rst 200 seconds. When the lasting interval was just
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Figure 7. Throughput with Different Lasting
Intervals of Workload Changes

longer than the duration of a sharp change (about 20
seconds) or the lasting interval was long enough to \ig-
nore" any small changes, the execution performed bet-
ter than other lasting intervals. Smaller lasting inter-
vals (i.e., less than 20 seconds) resulted in modifying
QEP con�gurations too often while longer lasting in-
tervals (e.g., 150 seconds) triggered the QEP recon�g-
uration too late so that less bene�t were gained. We
also note that recon�guration cost has a signi�cant im-
pact on the performance. Smaller recon�guration cost
performed better.



4 Related Work

Traditional static query optimization techniques are
well-developed and particularly useful for those queries
that are short running, e.g., on-line transaction pro-
cessing, but are not adequate for many of today's var-
ious application domains where long-running queries
ranging from hours to days are common. Most e�orts
in query optimization concentrate on how to optimize
a query plan prior to execution. For example, [3] and
[9] proposed an approach to address the problem of pa-
rameter changes between compile-time and run-time by
introducing a new operator \choose-plan" which incor-
porates a decision procedure to choose among alterna-
tive plans at start-up-time using up-to-date knowledge.
However, it is required that these parameters which are
unbound at compile-time must be de�ned or estimated
no later than start-up time. Adaptive Optimization
tries to improve the execution plan for a canned query
after each run. With a query feedback mechanism, [2]
approximates the attribute value distribution with a
curve-�tting function. [17] divides and orders the plan
search space into subspaces. A plan is produced based
on the current system parameters and the performance
of the past generated plans for the same query such
that an incremental optimization can be done.

Recently, there is some related work in this area ([1],
[16], [25]). In their work, either only limited changes
are allowed to QEPs or changes are restricted to built-
in functions. For example, [1] allows only the change of
built-in scan operator replacement. [16] proposed mid-
query re-optimization of QEPs in a relational database
environment. This work mainly addresses the inaccu-
rate estimation of data characteristics such as selectiv-
ity. Using statistics collected at run-time, the system
recon�gures the unprocessed portion of a QEP, hence
improving the performance. Intermediate results are
materialized for plan modi�cation. There are major
di�erences between our work and theirs. First, they
only recon�gure a QEP at points where no operation
is partially done. In other words, no pipelined paral-
lelism, or data ow structure, can be active when a
recon�guration is considered. On the other hand, we
considered the dynamically re-optimizingQEP con�gu-
rations in a parallel execution environment. The reason
is that users are going to expect full parallel support
for all user-de�ned extensions in an extensible database
environment, e.g., ORDBMS [5]. Parallelization is im-
portant for performance improvement to long running
queries. As a consequence, more recon�guration forms
are considered in our research.

Using a similar recon�guration technique as in [16]
(materializing intermediate results), [25] proposed a

two-phase (plan rescheduling and operator synthesis)
scrambling method to modify a query plan which is
discovered to be suboptimal due to data arrival de-
lays. Phase 1 identi�es the non-blocked sub-trees and
materializes the results produced by sub-tress. Phase
2 creates a new plan for processing the remainder
of the query. Our work considers more generic re-
optimization cases and allows user-de�ned trigger rules
to exploit more recon�guration opportunities.

We note that user-de�ned operators have been
widely studied in recent years ([10], [11], [12], [15], [18],
[21], [22]). Yet most published work discusses only op-
timization before query evaluation starts. For example,
the PREDATOR database system [22], which views
the world as an integrated collection of data types,
each of which supports a declarative, optimizable query
language, optimizes queries in an ORDBMS with en-
hanced abstract data types [21] before query execution.

5 Summary and Future Work

In this work, we focus on the performance improve-
ment of long running query execution in an extensi-
ble and distributed query processing system. We have
described an overview of the dynamic re-optimization
mechanisms and proposed a novel approach to imple-
ment the triggered dynamic re-optimization on-the-y.
The triggering approach we use to re-optimize query
execution plans when conditions of activated trigger
rules are satis�ed gives a timely response to the unex-
pected changes to system parameters and data char-
acteristics. In addition, the trigger manager can also
handle scheduled re-optimization requests and external
re-optimization commands.

There are several issues with respect to dynamic re-
optimization that require further investigation. First,
though user-de�ned optimization triggers can specify
the possible recon�guration forms for dynamic opti-
mizer, this can not help the optimizer to know more
about how to initially optimize user-de�ned operators.
In an extensible query processing system, a better
means to accomplish the optimization task should al-
low users to anticipate this process in a simple but clear
manner. In other words, operator developers should
have be able to de�ne their user-de�ned optimization

rules and even more. Further, an e�cient run-time
measurement is a key component for the dynamic op-
timizer. The sensitivity of a user-de�ned function to
system con�guration and data characteristics has great
impact in re-optimization decision making. A cost-
e�ective prediction algorithm for system variables and
data statistics parameters is vital. Finally, the tech-
niques of dynamic re-optimization can also be applied



to other applications such as fault tolerance, mobile
computing. For example, if a query is running on a mo-
bile computing environment where the system con�g-
uration may change anytime, dynamic re-optimization
can also provide a solution for guaranteed performance.
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