
A year's worth (sampled twice a day) of sea level
pressure data (single precision oating point) gen-
erated by UCLA AGCM model with a 4� Latitude
by 5� Longitude grid cell resolution is 9250560 bytes
(730x44x72x4). Each grid \slice" is therefore 12672
bytes. In this example, the dataset was stored in a
HDF �le located on the same machine as the MD-
CellularGridCoverage object, and the client was run
on a di�erent Sparc 20 Model 71 on the same LAN
(10baseT). Given a query to retrieve the entire year's
worth of data, the object returns an iterator to the
result set. A user can ask for a slice at a time or a n
slices at a time. The times below are the total elapsed
time to query and retrieve the entire dataset. Asking
the iterator object for a slice of data at a time (i.e.
730 CORBA/object calls) took 38.45 seconds. Asking
for 64, 128, and 730 slices at a time took 21.88, 23.30,
24.76 seconds, respectively.

The FeatureBucket and the FeatureTable provide
a container for lightweight GIS objects. In the cur-
rent implementation, both objects store the "states"
of their feature elements (i.e. points, polygons) as
records in the Illustra DBMS. We use Illustra's Spa-
tial Blade (abstract data types and methods) to de�ne
the lightweight spatial types, i.e. their temporal and
spatial attributes, their meta data and user-de�ned at-
tributes. Feature access is optimized using R-trees for
the spatial attributes. Preliminary performance anal-
ysis shows that creating 100 polygon features, each
polygon consisting of 30 points, takes about 94 sec-
onds while performing spatio-temporal queries takes
around 1 second. FeatureTable objects have similar
performance characteristics. The major di�erence be-
tween the two object types is the time taken to retrieve
features from their query result set iterators. A next
call on a FeatureBucket's iterator returns a feature as a
value structure in 0.02 seconds. A FeatureTable's iter-
ator returns a geometry object (a full-blown CORBA
object) in 0.1 seconds. We plan to further investi-
gate the performance of these objects by running the
FeatureBucket and FeatureTable object servers inside
client process walls and by employing other spatial
DBMSs for feature storage.

The current implementation of the Mediator, Cata-
log Wrappers, and Catalogs all support the same data
model (i.e. translation from a global schema to a
Catalog's local schema is straightforward, requiring
only a mapping from Illustra SQL data types into
CORBA data types). E�orts are underway to inte-
grate EOSDIS's IMS Catalog located at the Goddard
Space Flight Center. This catalog supports a pro-
prietary query language and communication protocol.
The Catalog Wrapper for this catalog will actually
perform the required query and schema translation
into NASA's Object De�nition Language, send the re-
quest to the GSFC DAAC, and perform the inverse
mapping of query results.

5 Conclusions
In this paper, we presented the goals, functionality,

architecture and preliminary results of OASIS, a ex-
ible, extensible, and seamless environment for scien-
ti�c data analysis, knowledge discovery, visualization,

and collaboration. OASIS o�ers scientists as well as
application developers a view of the world as a col-
lection of distributed, location- and platform indepen-
dent objects. This view is achieved for application
developers through the usage of well-known object in-
terfaces based on OGIS, and object implementations
based on CORBA. The view of the world as location-
independent objects is o�ered to scientists via high-
level applications such as the OASIS Catalog Browser
which provides query facilities to locate geodatasets,
as well as visualization and analysis tools which di-
rectly deal with OASIS data objects.

References
[1] A. S. Jacobson, A. L. Berkin, and M. N. Orton.

Linkwinds: Interactive Scienti�c Data Analysis
and Visualization. Communication of ACM, 1994.

[2] E.C. Shek and R.R. Muntz. The conquest model-
ing framework for geoscienti�c data. Technical Re-
port Technical Report 940039, UCLA Computer
Science Department, Oct 1994.

[3] R. M. Soley, editor. Object Management Archi-
tecture Guide (2nd Edition). Object Management
Group, 1992.

[4] K. Buehler and J. A. Farley. Interoperability
of Geographic Data and Processes: The OGIS
Approach. StandardView, ACM Perspectives on
Standardization, 2(3):163{168, 1994.

[5] R.R. Muntz, L. Alkalaj, D. McCleese, C. Me-
choso, J. Skrzypek, and C. Zaniolo. Data analysis
and knowledge discovery in geophysical databases.
NRA-92-OSSA-2, 1992.

[6] G. Graefe. Volcano, an extensible and parallel
dataow query processing system. IEEE Trans.
Knowledge and Data Engineering, 6(1):120{135,
1994.

[7] S. Chawathe, H. Garcia-Molina, J. Hammer,
K. Ireland, Y. Papakonstantinou, J. Ullman, and
J. Widom. The TSIMMIS project: Integration of
heterogeneous information source. In Proceedings
of the 100th IPSJ, Tokyo, Japan, 1994.

[8] Object Management Group. IBM/JOSS Object
Services, Persistence Service Speci�cation. Tech-
nical report, OMG TC Document Number 93.11.3,
1993.



Figure 7: Example of detailed information retrieved for a dataset selected via a query.



Figure 6: Example of a query form produced to support EOSDIS IMS schema.



Catalog
Wrapper

Local SCF
Info.

Repository

Illustra
DBMS
 Server

SQL

EOSDIS
DAAC IMS

Server
DAAC
Info.

Repository

ODL

Java
Based
WWW

Browser

HTTPD
Server

Queries/Results
("local" schemas)

HTML

EOSDIS
IMS

Valids

CGI-Launched
SCF Client

OASIS

Browser 
Session
Object

Catalog Service

Mediator

Catalog
Wrapper

SCF
Catalog

Queries/Results
("global" schema)

HTTP

Figure 5: OASIS Catalog Service System.

3.3 OASIS Applications

Catalog Browser
The Catalog Browser provides a graphical user in-

terface for locating scienti�c datasets, derived prod-
ucts produced as the result of previous queries, etc..
The Browser is written using SunSoft's Java language
and C++ CGI-bin programs and executes via Java-
enabled Netscape 2.0. The Browser can be invoked in
a stand-alone mode or launched from an application
such as LinkWinds or GLINT (see Fig. 1). Upon in-
vocation, the scientist is asked to choose from a set
of available keyword sets (i.e. global schemas). This
information is provided to the Browser by the Cat-
alog Service. Once the global schema is chosen, the
Browser interacts with the Mediator which is respon-
sible for evaluating queries on the the schema. The
Mediator provides the Browser with schema informa-
tion (keywords, valid values, etc.) necessary to build
the appropriate query form.

Figure 6 presents an example query form. In this
example, the scientist can specify a time range, a spa-
tial extent (by drawing a bounding box over the map),
and select parameters of interest. Figure 7 shows the
detailed information retrieved presented to the scien-
tist as the result of the example query. The net re-
sult of a scientist's interaction with the Browser is
the location and selection of distributed objects (i.e.,
datasets). The object references of the selected objects
can then be passed back to the launching application,
or can be passed to an application invoked through
the Browser.

GLINT
GLINT is a tool developed by Scripps Institute of

Oceanography and JPL's Data Exploration Labora-
tory that provides a means to study data from geo-
graphic subregions of a global dataset as well as in-

teractively comparing multiple data parameters. The
application is designed to support the analysis of
both point (Level 2) data and gridded (Level 3) data.
GLINT is written using Research System Inc.'s Inter-
active Data Language (IDL), and is being layered on
top of OASIS.

LinkWinds
The Linked Windows Interactive Data System

(LinkWinds) is a prototype visual data exploration
system developed at JPL. LinkWinds employs a
graphical spreadsheet paradigm to support access,
display, and analysis of large, locally stored data
sets. Running under UNIX, it is an integrated multi-
application execution environment allowing the dy-
namic interconnection and control of multiple win-
dows containing a variety of displays and manipula-
tors. As part of our prototype e�ort, we have en-
hanced LinkWinds to employ the OASIS API to locate
and access distributed, heterogeneous datasets.

4 Preliminary Results
During the past year, we have developed a pro-

totype of OASIS using SunSoft's NEO environment.
We have prototyped the object hierarchy depicted in
Fig. 3, and implemented the MDCellularGridCover-
age and MDCellularGridCoverageCollection for grid-
ded data and the FeatureBucket and FeatureTable for
lightweight GIS objects.

The MDCellularGridCoverage family of objects
supports representation of and access to gridded data
stored in HDF and NetCDF data �les. The collec-
tion object provides a convenient representation of a
gridded dataset's parameters stored (tiled) across nu-
merous data �les. To elucidate access times to gridded
data via these objects, consider the following test case.



state =
unfinished tracks

insert completed
tracks into database

visualize tracks

Sea Level
Pressure

minima

2t
1t

1t2t

Read
SLP

extract
 minima

track 
cyclones

1t2t

Read
700mb Wind

Figure 4: Data ow representation of the cyclone tracking query.

object model has a more behavioral aspect to it since
data objects have behaviors, while the �eld model
comes from a more database point of view in that it
captures more of the properties of data (e.g., layout)
and algebraic operations (e.g., how data can be parti-
tioned for parallel processing) so that this knowledge
can be exploited during query optimization.

Catalog Service
One of our project goals is to provide one stop

shopping for scienti�c data, be it data created and
stored locally, or data located at remote data reposito-
ries such as NASA's EOS Distributed Active Archive
Centers (DAACs)3. In this scenario, scientists pose
queries via the OASIS Catalog Service infrastructure
(Fig. 5).

The Catalog Service is loosely modeled after the
TSIMMIS system [7]. Mediators are employed to re-
alize global query schemas and provide query support
via their query language (e.g. ODL, SQL). Upon re-
ceipt of a query, a Mediator decomposes the query
and farms out sub-queries to its participating cata-
logs, which are encapsulated via CatalogWrappers. A
Catalog Wrapper translates the query from the global
query schema and language to the target catalog's lo-
cal schema and query language. The catalog then pro-
cesses the query and returns an iterator object (e.g.
database cursor) to the Wrapper. The Wrapper, in
turn, passes an iterator object back to the Mediator.
However, this iterator returns tuples in the Media-
tor's global schema. To do so, the Wrapper's iterator
issues a request to the catalog iterator for the next
tuple, translates the tuple from the catalog's schema
into the Mediator's global schema, and returns the re-
sultant tuple. The major reason for this "lazy" evalu-
ation of query results is to enable query results to be
returned to the user as necessary, thereby avoiding po-
tentially unnecessary processing overhead (especially
on large query result sets).

geoPOM: Federated Spatial DBMS
OASIS scienti�c objects need to store their state in

a storage system, i.e. a �le system or database man-
agement system (DBMS). However, binding the object
implementation to a speci�c storage system makes it
non-portable. For example, the state of an OASIS

3Currently, we have catalogs scattered across UCLA and

JPL, and plan to add the Scripps Institute of Oceanography

and Goddard Space Flight Center's DAAC in the near future.

grid object may in fact be stored in di�erent �le for-
mats like netCDF, HDF, etc.. One way to solve this
problem is to implement di�erent versions of the grid
object (same interface) each supporting a di�erent �le
format. However, if a new �le format is added, a new
implementation of each grid object class has to be de-
veloped. Alternatively, one can provide an abstrac-
tion of the physical storage and let the object delegate
the storage of its state to a persistent object manager
which handles the actual mapping to a concrete stor-
age system. Now, if new �le format or storage system
is added, only the persistence object manager has to
provide a new adaptor to it.

The OMG CORBA speci�cation adopted a speci�-
cation for such a system called the Persistent Object
Manager (POM) [8]. The POM provides the func-
tionality of a federated object-oriented DBMS, how-
ever without supporting object methods or a query
language. This functionality is not su�cient for a
geoscienti�c environment where COBRA objects like
feature buckets need to store their �ne-grained state
inside a DBMS and to recreate it in main memory by
posing spatial queries to the DBMS, i.e. support of
a (spatial) query language is necessary. Furthermore,
loading exibility and storage optimization has to be
provided for huge objects like grid objects. Therefore,
we extended POM for a geoscienti�c environment and
the resulting system, named geoPOM, comprises the
functionality of a federated spatial DBMS.

geoPOM uses an object-oriented data model based
on ODMG's ODL and OQL as the common data
model. Furthermore, geoPOM's common data model
provides spatial types like points, polygons, or mul-
tidimensional arrays, and spatial operators for these
types. Fine-grained spatial objects are mapped to spa-
tial DBMSs like Illustra or ESRI's SDE, while large
grained objects like multi-dimensional grids can be
mapped to the corresponding types of spatial DBMS,
if available, or to �les using archive formats like HDF
or netCDF. Object types not including spatial charac-
teristics are stored in an object-oriented or relational
DBMS. While geoPOM is considered to be the basic
persistence manager for all CORBA objects in the OA-
SIS environment, we are focussing primarily on spatial
types in the development of geoPOM.



have the same attributes, but may have di�ering geo-
metric properties (Point, LineString, Spaghetti, Poly-
gon, etc.). Queries are expressed using SQL along
with spatio-temporal operators. Results are delivered
to the requesting client as value structures via an it-
erator. The FeatureTable is a container GeoDataset
object with slightly di�ering properties. First, all fea-
tures must have the same geometric representation
and attribute set. Second, methods provide the ability
to send and retrieve feature information as CORBA
objects (geometry objects).

3 System Architecture
In Fig. 1, we depict a conceptual environment

for scienti�c data analysis, knowledge discovery, vi-
sualization, and collaboration based on the marriage
of object-oriented programming paradigm with a dis-
tributed object management system. At the heart
of the system lies our object hierarchy which acts as
the conceptual/semantic glue linking our applications
with scienti�c data. Surrounding this core is OMG's
common Object Request Broker (ORB), Basic Object
Adaptor (BOA), and Interface Repository (IFR). The
next layer contains a host of CommonObject Services.
The latter two layers provide the physical machinery
and services necessary to develop a distributed, object-
oriented computing environment. The �nal layer of
this processing onion contains the query, storage, and
catalog services provided by our research e�ort. Ap-
plications that are operating on top of this distributed
computing substrate include: the Java-based Catalog
Browser, GLINT and LinkWinds. The latter two ap-
plications are legacy applications developed at JPL
under di�erent funding auspices. In this e�ort, we are
collaborating with colleagues at JPL to extend these
systems in order to embrace distributed object tech-
nology.

3.1 Distributed Object Management Sys-
tem

Our development e�ort is based on SunSoft's
CORBA-compliant NEO software. We have partici-
pated in SunSoft's Early Developer Release Program
of NEO (previously known as DOE) and have been
a beta test site since March 1994. NEO enables
users to access information location independent in
the network as discrete, self-contained \objects". An
object, a combination of code and data, may han-
dle a single function, or it may encapsulate an en-
tire existing application and its data. Once again, it
should be noted that NEO provides interoperability
with other vendor's CORBA environments due to the
recently adopted CORBA-2, Universal Networked Ob-
jects speci�cation.

In Fig. 1, the NEO facilities are shown as the light
shaded blob encapsulating the scienti�c objects. The
�rst blob next to the scienti�c objects contains the
core CORBA environment, i.e. the ORB, the IFR
which keeps track of available object types in the en-
vironment, and the BOA. Central to this layer is the
ORB which acts as an intermediary between objects
and clients, locating and delivering messages to re-
quested objects. The ORB employs the BOA to start

up the server process for a requested object (or to cre-
ate a new thread inside an existing server process).
The next blob contains the CORBA Common Object
Services. To build object servers as well as client ap-
plications, we are using the NEO Workshop, a pow-
erful, C++ API to ORB, BOA, IFR and CORBA's
Common Object Services.

3.2 OASIS Services
The main services provided by our e�ort appear in

the outer (dark grey background) area in Figure 1.

Conquest Parallel Query Execution Environ-
ment

The primary goal of our current HPCC [5] research ef-
fort is to demonstrate the applicability of information
systems for geophysical databases to support cooper-
ative research in earth and planetary science projects.
The Conquest Parallel Query Processing System [2]
was designed to execute scienti�c queries expressed as
dataow diagrams. A novel scienti�c data model was
developed to facilitate exploratory data analysis and
data mining and to encompass scienti�c observation
and simulation data so that it can be used as a canon-
ical data model in a heterogeneous scienti�c query pro-
cessing environment. In addition, the data model and
its associated algebra capture signi�cant semantic and
structural properties, and hence provide the basis for
exploiting these properties during the parallelization
and optimization of complex scienti�c queries.

A scienti�c query, visually represented as a dataow
diagram (Fig. 4) is expressed by the user using
a scripting language. An interpretor automatically
translates the query into an equivalent Conquest alge-
braic expression and sends it to the Conquest Query
Manager. The Query Manager, upon receipt of a
query, sends the query to the rule-based Query Op-
timizer which optimizes, parallelizes, and transforms
the algebraic expression into a parallel Query Execu-
tion Plan (QEP). The plan is then forwarded to the
Conquest Query Execution Server for evaluation. In
the mean time, the Query Manager sets up a con-
nection to the Visualization Manager and initializes
it in preparation for the data stream returning from
the Query Execution Server as the result of the query.
The design of the Query Execution Server is based
on the Volcano extensible query execution engine [6].
Conquest extends Volcano with support of a scienti�c
data model encompassing relational data, scienti�c
data �elds, and multidimensional array data. We have
implemented generic algebraic operators in this data
model as well as application-speci�c operators to sup-
port scienti�c studies. The executor adopts Volcano's
hybrid demand- and data-driven dataow paradigm,
and supports di�erent forms of query parallelization
through various support operators.

It is natural to ask how the Conquest's �eld model
is related to the OASIS data model. The �eld model
and OASIS object model share some very fundamen-
tal concepts such as �ber bundles (the separation of
value and index spaces) and space bundling (ability to
represent a hierarchy of spaces). However, the OASIS



Root

Catalog

CosQueryService::
QueryableCollection

FeatureTable

TIN

MDCellularGrid-
Coverage

PropertyService::
PropertySet

CosEventCom::
PushConsumer

CosQuery::
QueryEvaluator

CosQueryCollection::
Collection

CatalogWrapper

BrowserSession

Network

Coverage

SpatialReferencing

Geometry

MDCellularGrid Curve Surface Solid

LineString

Polygon

PolygonalSurf SampledGrid

GeoDataset

FeatureBucket

Mediator

CatalogService

Point

Feature

TIN

Figure 2: OASIS's OGIS-inspired interface hierarchy.

CatalogService

Mediator

CatalogWrapper

Catalog

GeoDataSet

MDCellularGrid-
CoverageCollection

FeatureTable FeatureBucket TIN Network MDCellularGrid-
Coverage

Geometry

Point LineString Polygon Spaghetti

Figure 3: OASIS's OGIS-inspired object hierarchy.



"Local" (UCLA/JPL/Scripps LANs)
Remote

Tertiary
Storage

Sybase Goddard
DAACSpatial

Database
Engine

LinkWinds

GLINT

Java-Based
Catalog Browser

Naming
Service

Interface
Repository

MDCellularGrid-
Coverage

Feature-
Bucket

TIN

Basic
Object Adapter

Property
Service

Event
Service

Persistent
Storage
Manager

Relationship
Service

geoPOM: Federated
Spatial DBMS

Catalog Service
Conquest Parallel

Query Execution Service

GeoData-
Set

Figure 1: Conceptual architecture of OASIS, a exible, extensible, and scalable environment for scienti�c data
analysis, knowledge discovery, visualization, and collaboration. Central to the architecture are the scienti�c,
spatio-temporal objects accessed by applications via a distributed object management framework.



�es the HIRS2/MSU dataset object (a collection of
multi-dimensional cellularly-gridded coverages). The
network-addressible object reference can be used by a
visualization package such as LinkWinds [1] or by sci-
enti�c query analysis tool such as the Conquest Par-
allel Query Execution System [2]. The HIRS2/MSU
object encapsulates the code necessary to retrieve sub-
sets of data possibly stored in a �le system or a data
base system (DBS), or perform operations on the data.
However, all HIRS2/MSU objects have a common in-
terface, i.e., support a common set of operations. A
\handle" or object reference is used to refer to the ob-
ject and invoke these operations in a uniform manner,
regardless of the location of the object or the imple-
mentation details. The point here is that the scientist
does not have to remember, or be bothered with in-
tricate, yet meaningless, information and can remain
focused on the task at hand.

To meet OASIS design goals, we are exploiting
the emerging distributed object management system
(DOMS) technology as promoted by the Object Man-
agement Group's (OMG) Common Object Request
Broker Architecture (CORBA) standard [3]. CORBA-
compliant software is now available from many ven-
dors and, now that a \on the wire" protocol stan-
dard for inter-ORB communication has been adopted
(CORBA 2.0), interoperability between di�erent ven-
dors' implementation of CORBA on heterogeneous
platforms will be supported. The basic idea of a
CORBA-compliant DOMS is to merge the notion
of location and platform transparency and object-
oriented software technology. The object-oriented
paradigm is well established as having a number of
signi�cant advantages in terms of building reusable,
maintainable, extensible software. The idea then is
to provide the abstraction to scienti�c applications,
and in turn to scientists, that the \world" consists of
a set of objects. These objects are designed to corre-
spond to the needs of the applications, however shield-
ing them from the actual physical realizations of the
objects. Location and platform transparency means
that scienti�c applications are provided with an ab-
straction in which they can operate on objects with-
out regard for the objects' location, the hardware or
software platform, etc. The bottom line is that appli-
cations are written in terms of this abstract world of
objects and operations on objects.

The remainder of the paper is organized as follows.
In Section 2 we outline our object model. Next, we
present the OASIS system architecture and discuss the
major system components. In Section 4, we present
preliminary results, and conclude with a few remarks.

2 OASIS Object Model
In order to build the conceptual architecture shown

in Fig. 1, one must de�ne an object model for data ob-
jects that are to be manipulated by scientists (via ap-
plications) and managed by the OASIS environment.
In some respects, this goal is ill-posed; a closed set of
objects that cover (model) the enormous diversity of
scienti�c data products employed by the science com-
munity does not exist.

Tomake the problem tractable, one typically selects

an application area to restrict the set of objects to be
de�ned, implemented and managed. In our project,
we are concentrating on the support of a data model
for geoscience data collected and produced from obser-
vations (e.g., Path�nder datasets), Earth Observing
System datasets at di�erent processing levels, simu-
lations (e.g., UCLA Atmospheric General Circulation
Model), and derived products (e.g., high-level features
extracted in data analysis runs).

Some e�orts attempt to develop a completely new
conceptual model and \world view" for geographical,
spatio-temporal data and information systems. Al-
ternatively, one may embrace a data model that has
been accepted by the GIS community as its standard
and develop an object and process model based on it.
Unfortunately, an general accepted GIS data model
does not exist. However, an e�ort is underway to al-
leviate this situation. The Open GIS Consortium has
embarked on an e�ort to de�ne an Open Geodata In-
teroperability Speci�cation (OGIS) [4] for GIS data.
The core of this speci�cation is a standardization of
basic geoscienti�c entities like e.g. datasets, features,
or feature collections regarding their attributes and
their operations. Over the past year and a half, we
have been actively involved in de�ning OGIS.

Figure 2 presents our OGIS-inspired interface hi-
erarchy. The Geometry branch provides the inter-
faces required to support a spatial object's geometric
properties, be it a Point, LineString/Chain (a set of
connected points), or a Grid, etc.. The GeoDataset-
rooted interfaces are intended to provide behavior
generic to all datasets (e.g. query support) as well
as methods that are particular to the di�erent spatial
models (e.g. grid, image, vector). The non-spatial
interfaces (Catalog, Mediator, etc.) provide facilities
to gather and query spatial objects based on common
attributes (\metadata").

Figure 3 depicts the OASIS object hierarchy. A
GeoDataset is a type of object which is intended to
represent geographic information. As with the more
general dataset concept, we can think of di�erent
types of GeoDataset, each representing a di�erent for-
mal spatial model (e.g. vector, grid, image). Of par-
ticular interest to our research e�ort are objects de-
signed to support model- or sensor-produced multi-
dimensional regularly and irregularly gridded spatio-
temporal data as well as traditional GIS objects such
as polygons, line strings, etc. Multidimensional grid-
ded datasets are typically quite large, representing
tens or hundreds of megabytes of data, or more, are
\heavyweight" enough to be represented as a CORBA
object; the same cannot be said of �ne-grained spatial
objects.

Real-world features such as roads typically have ge-
ometric properties (centerline, extent) represented us-
ing line strings, envelopes, etc. and a set of attribute
values. However, if one desired to model/instantiate
an object for every road in North America, the num-
ber of objects can grow into the millions. One pos-
sible design strategy that we are investigating is the
use of the container approach (FeatureBucket). The
FeatureBucket is designed to provide storage and re-
trieval of features by value. All features in the bucket



OASIS: An Open Architecture Scienti�c Information System

Edmond Mesrobian, Richard Muntz, Eddie Shek,
Silvia Nittel, Mark LaRouche, and Marc Kriguer

Computer Science Department

University of California, Los Angeles

Los Angeles, CA 90024

Abstract
Motivated by the premise that heterogeneity of soft-

ware applications and hardware systems is here to
stay, we are developing OASIS, a exible, extensible,
and seamless environment for scienti�c data analysis,
knowledge discovery, visualization, and collaboration.
In this paper we discuss our OASIS design goals and
present the system architecture and major components
of our prototype environment.

1 Introduction
In the course of research activities, a scientist would

like to e�ciently store, retrieve, analyze and interpret
selected data sets from a large collection of scienti�c
information scattered across heterogeneous computa-
tional environments, and to share the gleaned informa-
tion with other scienti�c communities both nationally
and internationally. Consider the following prototyp-
ical interaction of a scientist with a dataset1. Once
a scientist has located the dataset of interest, a ma-
jor undertaking in its own right, a speci�c portion of
the dataset is retrieved. Typically the desired sub-
set of the dataset is de�ned by a space/time window
(e.g., area from 10�N Latitude 120�W Longitude to
50�S Latitude 120�E Longitude during the time pe-
riod from Jan 15, 1979 to Dec. 25, 1980) and an
attribute list (e.g., temperature, pressure). Next, a
conversion program is executed to transform the data
into a form (e.g., Hierarchical Data Format (HDF))
digestible by the analysis/visualization programs that
are going to be utilized. Sometimes the analyst has
to write the conversion program, which may require
battling with poorly documented, locally created data
formats2. This step is followed by the transmission
of the dataset from the archive site to the user's lo-
cal workstation (e.g. File Transfer Protocol (FTP)).
The dataset is then injected into the desired analy-
sis package (e.g., IDL, MATLAB, AVS) or into a local
database. Here, the dataset might undergo �ltering to
remove noise, computation of parameter averages and
cross correlations, extraction of data slices, etc. The

1A dataset is a uni�ed collection of information. It repre-

sents information which has been collected as a part of a de-

�ned process like data collected by a satellite's remote sensors

or produced by a simulation model.
2Archive formats like HDF and netCDF are alleviating the

need to create new, proprietary data formats.

results of these operations are then visualized. The
analysis and visualization steps are iterated as neces-
sary.

In summary, a scientist/programmer often has to
battle with a plethora of computer systems, programs,
protocols, and data formats. Heterogeneity is however
a fact of life in dealing with computers. Hardware
vendors continue to develop diverse platforms and op-
erating systems; �le systems, network software, etc.
continue to proliferate. Vendors and research institu-
tions continue to develop a large number of software
tools, each of which satis�es part of what the scientist
needs. Ironically, it is the availability of such a range of
hardware and software that creates a major problem.
More often than not, even within a single scienti�c
group, a diverse set of platforms and tools are utilized.
This diversity usually translates into time consuming
and costly integration problems which were not an-
ticipated. The problem is even more severe when at-
tempting to share informationor code between groups.
We believe that software and hardware heterogeneity
are here to stay. The players may change; today's state
of the art systems may become tomorrow's legacy sys-
tems, network software, etc. continue to proliferate.
The approach we advocate deals directly with hetero-
geneity rather than attempting to build a monolithic,
all encompassing system that will replace everything
else and therefore make heterogeneity disappear.

Motivated by the premise that heterogeneity is here
to stay, we are developing OASIS (Open Architecture
Scienti�c Information System), a exible, extensible,
and seamless environment for scienti�c data analy-
sis, knowledge discovery, visualization, and collabo-
ration. The central notion behind the proposed ar-
chitecture is to provide software developers, as well
as end-users, the logical abstraction that the entire
computing environment is simply a set of objects
of various types (\classes") as illustrated in Fig. 1
(the objects are at the core of system). An ob-
ject class de�nes a type of object in terms of at-
tributes (variables) and a set of operations (\meth-
ods"). For example, consider a scientist charged with
the task of verifying an atmospheric dataset captured
by the High Resolution Infrared Radiation Sounder
(HIRS) and Microwave Sounding Unit (MSU) instru-
ments ying aboard NOAA's polar orbiting meteoro-
logical platform with a model-generated dataset. Us-
ing the OASIS Catalog Browser, a scientist identi-


