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ABSTRACT 

Technology advances have created a wide variety of novel, 
inexpensive sensors in the millimeter range that can be attached to 
or embedded into smartphones. These sensors are now directly 
connected to the Internet enabling us to collect high frequency 
updates from potentially thousands of mobile sensors densely 
deployed over an urban area. Today, data stream management 
systems (DSMS) are powerful data processing tools for update 
rates of 100,000-500,0000 tuples/s. In this paper, we investigate 
extending DSMS for monitoring continuous environmental 
phenomena such as air borne toxins or air quality based on up to 
250K individual mobile sensor updates per query window to be 
spatially interpolated into a smooth, grid-based representation in 
near real-time. We propose a stream query operator approach and 
investigate different strategies to achieve near real-time spatial 
interpolation, while investigating memory footprint, runtime 
efficiency and interpolation quality of the different strategies.   

Categories and Subject Descriptors 

H.2.3 [Database Management, Systems]: Query Processing 
H2.8 [Database Management, Database Applications] Spatial 
Databases.  

General Terms 

Algorithms, Performance. 

Keywords 

Real-time spatial interpolation, DSMS, sensor data streams, 
continuous phenomenon. 

1. INTRODUCTION 
Technology advances have created a large variety of novel, 
inexpensive, small-form sensors that can be attached to or 
embedded into smartphones. We can expect that next generation 
smartphones will be sold with a plethora of built-in environmental 
and health sensors. Via smartphones the sensors are directly 
connected to the Internet and enable us to collect high frequency 
updates from potentially hundreds of thousands of mobile sensors 
deployed over a larger urban area [1,2,3] enabling real-time 
hazard detection or urban air quality control [3]. Processing and 
analyzing such large sets of sensor data streams in real-time 
challenges traditional processing strategies using DBMS and GIS 
due to the limitations of the DBMS disk-based architecture. Over 
the last decade, data stream management systems (DSMS) have 

been developed motivated by the throughput needs of real-time 
financial analysis and fraud analysis applications. DSMS store 
incoming updates only in main memory and process them directly 
using non-blocking, pipelined stream query operators. 

In this paper, we focus on extending DSMS to handle the 
monitoring of continuous environmental phenomena with mobile 
sensor data streams in near real-time. Imagine the following 
scenario: in a metropolitan area such as Los Angeles (ca. 34,000 
mi2) about 2 million people continuously collect environmental 
data such as air quality data or volatile organic compounds (VOC) 
using their smartphones with a rate of 1 update per 30s; sensor 
data streams are either sent to the cloud or distributed servers, 
which relay the sensor data to a centralized DSMS. About 67,000 
updates per second arrive at the DSMS (for simplicity, we ignore 
network latency issues and data skew in this paper). A user query 
requests the following information: “Continuously monitor the 

VOC spatial field using the sensor streams s where s.type=VOC 

and contains(Los Angeles, s.location) using window=15s”.  

A user is more interested in the information of the smooth 
distribution of the VOC field over the geographic region rather 
than the individual sensor data stream updates, their location and 
the values (similar to a scatterplot). Thus, the DSMS needs to 
spatially interpolate all individual sensor data streams to produce 
this smooth representation and provide a grid output. Spatial 
interpolation algorithms are widely established [8], but 
historically they are tuned towards sparse samples over large 
geographic regions and achieving high interpolation quality, 
making them computationally complex and expensive [8]. To the 

best of our knowledge, real-time spatial interpolation based on 

sensor data streams using DSMS has not yet been investigated 

today.  

With up to 1 million sensor update tuples per query window, 
efficient spatial interpolation that generates a near real-time grid 
based approximation is computationally challenging and the 
detailed research focus of this paper. Historically, a wide variety 
of spatial interpolation approaches exists (e.g. Voronoi, Kriging, 
Inverse Distance Weighting (IDW), and others) [8]. For our 
approach to achieve near real-time execution time in a data stream 
setting, re-designing spatial interpolation methods as non-
blocking data streams operators is of key importance. We have to 
consider the following: first, main memory is limited in DSMS as 
all necessary incoming data and query operators share the 
available memory. Secondly, the computational cost of a spatial 
interpolation method has to be reduced and we need to provide 
scalable and adaptive performance for very large numbers of 
sample points. Third, despite these resource restrictions, a 
redesigned interpolation method still needs to generate a high 
quality interpolation result.  

Our contributions: A main challenge of spatially interpolating 
sensor update streams is the identification of relevant updates for 
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the entire estimated region within a stream query, made especially 
challenging by moving sensors. We propose a novel in-memory 
grid index to keep track of incoming updates per query window, 
and various strategies of organizing the tuples per grid cell 
(unordered materialized list, unordered virtual list, and 

incremental kNN list). Our extensive tests show that using up to 
250k updates per query window can be interpolated in 1-2s using 
our proposed methods. 

2. PIPELINED OPERATORS FOR SENSOR 

STREAM SPATIAL INTERPOLATION 
In DSMS, a declarative stream query is translated into a query 
execution plan that consists of a directed acyclic stream operator 
graph. Each operator contains an input queue, the operator 

instance with its state (e.g. necessary cached tuples to perform the 
operation), and is connected to an output queue to which the result 
tuples are pushed. Operators work in a pipelined, non-blocking 
fashion.  

Applying this operator principle to a single data stream query that 
performs spatial interpolation, the query’s first operator needs to 
keep track of all the relevant incoming sensor tuples within the 
query window, and assign tuples to the query’s other operators 
(see Figure 1). Once all tuples are available, they are interpolated 
temporally (not discussed in this paper), and spatially. The query 
output is a grid and each grid cell value is interpolated based on 
the available updates within the cell and surrounding cells. For 
this paper, we chose Inverse Distance Weighting (IDW) as spatial 
interpolation method due to its linear computational complexity 
[6].  

2.1 Pipelined stream query operators for real-

time spatial interpolation 
Our proposed pipelined stream operator query plan is depicted in 
Figure 1. It is composed of the following stream operators: 

Scan/index operator: the scan operator observes the queue of 
incoming sensor tuples. For each tuple, it checks whether the 
tuple’s location stamp is within the query’s spatial region. It then 
assigns it to one or more cells for which it can be used as a 
potential kNN value (discussed in Section 3.3).  

Grid cell operator: conceptually, a cell operator exists for each 
grid cell, and cell operators can potentially run in parallel. The 
cell (or a block of cells) operator maintains a list of relevant tuples 
per cell, and once all tuples for a query window are available, the 
cell’s tuples are pushed to the input queue of the cell interpolation 
operator.  

Cell interpolation operator: the cell interpolation operator 
interpolates all tuples per grid cell and estimates the value for the 
grid cell.  

Assemble operator: The assemble operator keeps track of all grid 
cells for a single grid and generates the output grid.  

The individual grid cells, grid cellblocks or the entire grid can be 
used as input for other stream query operators, e.g. event 
extraction operators. 

2.2 Optimizing sensor data stream based 

spatial interpolation 
While the stream operators for spatial interpolation can be 
optimized in different generic DSMS ways (stream partitioning, 
or parallel execution of operator instances), two potential 
bottlenecks exist: computational complexity and main 

 
Figure 1. Sensor data stream based spatial interpolation. 

memory consumption. Both parameters are influenced by the 
spatial interpolation configuration as well as the input sample size. 
If we parameterize the interpolation to generate a 256x256 output 
grid and assume about 100K sensor updates, about 1.5 tuples per 
grid cell are available (with uniform spatial sensor distribution). 
To improve interpolation quality, we start adding the tuples of 
surrounding cells to a cell’s interpolation input to improve quality. 
While this improves interpolation quality, this also significantly 
increases the memory footprint and the computation time. 
Similarly, interpolating finer grids leads to higher computation 
cost and a larger memory footprint. In the following sections we 
discuss our proposed options to optimize these parameters. 

3. OPTIMIZING INDIVIDUAL GRID CELL 

INTERPOLATION 
As mentioned, we create a grid cell-based index structure between 
the scan operator and the interpolation stream operators. The grid-
based index has the same resolution as the spatial interpolation 
output grid. In this section, we discuss options of organizing the 
tuples per grid cell.  

3.1 Materialized unordered grid cell list 
First, the tuples per grid cell are assigned to a materialized 
unordered tuple list per cell (MUCL). Tuples are inserted in the 
order they arrive. Instead of referencing the original tuples, a 
cell’s materialized list consists of <distance, value> pairs. The 
distance parameter is the spatial distance between the cell ci’s 
center and the location stamp of the sensor tuple. Additionally, the 
tuples of neighboring cells are added to ci’s MUCL. If we vary the 
radius between 0 and 10 around ci, ci’s tuple list can grow up to 
1200 elements for r=10 and a 256x256 grid, and around 260K 
updates. The tuple list is passed to the cell interpolation operator.  

In this configuration, the memory footprint can be excessive since 
we a) create new derived tuples from the original tuples, and b) 
derived tuples are replicated within many neighboring cells if a 
large radius is chosen. On the other hand, this approach 
redistributes tuples of under-sampled cells, which works well for 
spatial data skew. 

3.2 Virtual unordered grid cell list 
In the second approach, we avoid the replication of tuples in 
neighboring cells and assign each tuple only to the grid cell in 
which it is contained (VUCL, virtual unordered tuple list per cell). 
Thus, tuples are assigned to at most one grid cell. The cell list 
consists of references to the original tuples, which significantly 
minimizes the memory footprint and the runtime for the indexing 
step. An additional gather operator creates an individual cell list 



for ci by iterating over the neighboring cells of c
the partial lists of neighboring cells into a new temporary list, 
which now consists of (distance, value) pairs. The temporary list 
is used directly for the interpolation operator and 
In this configuration, the memory footprint is small
interpolation operator requires more computation

3.3 Materialized kNN grid cell list
In the third option, a fixed length kNN list is created
(k nearest neighbor cell list, kNNCL). Compared to the unordered 
and variable sized lists of 3.1 and 3.2 the structure and content of 
the kNN list has direct impact on the cell’s interpolation quality; 
since k is static the maximum memory footprint of 
estimated. Here, the scan operator reads the input tuples and 
tuple ti’s location value. It determines whether 
cell ci and calculates the distance between ci’s center and 
value. The scan operator tests ci’s existing kNN list 
the distance of ti with the distances of the existing tuple
list. If the list is not full or ti is located closer 
than the furthest of the other existing tuples tj ti is add
Otherwise, ti is discarded. If the list is over capacity, the furthest 
tuple tj is discarded. 

The scan operator also potentially assigns ti to neighboring 
ci. Thus, ti is additionally tested with regard to relevance 
surrounding cells of cell ci with a radius r around c
k=10 per ci and generate a 768x768 grid (ca. 600K cells
case even with a very large update set per window
average only 0.2 tuples per cell are present. Additionally testing 
tuples against the neighboring cells with a radius 
sufficient kNN tuples for each cell ci are found.  

4. PERFORMANCE EVALUATION

4.1 Experimental Setup 
Since real data sets for our research are not yet available
synthetic data modeled in a NetLogo environment
freely according to a random walk model and 
environmental sensor measurements along their paths. We created 
a reproducible phenomenon that is smoothly distributed over t
simulated area and changes its gradient slowly and smoothly over 
the entire area continuously. We generated the following 
populations: 16,384, 32,768, 65,536, 131,072, 262,144 and 
524,288. Each agent sampled the phenomenon at the same time 
and updated a single sample per query window for the
paper. We tested the grid sizes 256x256, 512x512, and 768x768

cells of ci, and aggregating 
a new temporary list, 

) pairs. The temporary list 
and then discarded. 

memory footprint is small, but the 
computation time.  

cell list 
created per grid cell  

. Compared to the unordered 
structure and content of 

interpolation quality; 
memory footprint of kNNCL can be 

the input tuples and each 
 ti is contained in 

center and tj’s (x, y) 
existing kNN list and compares 

with the distances of the existing tuples tj in the 
closer to the cell center 

is added to the list. 
ver capacity, the furthest 

neighboring cells of 
to relevance to the 

around ci. If we chose 
600K cells) in this 

update set per window (e.g. 130K), on 
Additionally testing 

radius r=5 assures that 
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yet available, we used 
environment. Agents move 

cording to a random walk model and generate 
sensor measurements along their paths. We created 

t is smoothly distributed over the 
its gradient slowly and smoothly over 

the following agent 
, 65,536, 131,072, 262,144 and 

. Each agent sampled the phenomenon at the same time 
for the tests in this 

We tested the grid sizes 256x256, 512x512, and 768x768. 

Runtime Environment: The proposed s
in Java in a limited DSMS environment, i.e. operators are 
connected via queues, and work in a pipelined fashion
not consider any of the other DSMS components
experiments were run on an Apple MacBook 
Intel Core i7 (Model i7-620M; a dual core pro
virtual cores), 8 GB DDR3 memory at 1067 MHz
OS X 10.7.4 (64 bit) and Java 1.6.0_31 (64 bit)
strategies were implemented as data stream components
a DSMS environment. 

4.2 Indexing strategies for 
We investigated the runtime performance for 
(materialized unordered cell list), VUCL

list) and kNNCL (k nearest neighbor cell list)
limitations in this paper, we present only a small subset of all 
results graphically (Figure 2). Beside
performance, we investigated the impact of the neighborhood

radius selected with regard to adding tuples to a cell’s list and 
tests with radii = {0,1,2,3,5,10}. 

4.2.1 MUCL 
As expected, enlarging the radius using the
increases runtime for the indexing step significantly. For exam
for a 512x512 grid with 262K samples, indexing for radii 0
takes about 3s, while r=5 requires about 30s. We determined that 
r=5 can be considered the upper search bound for the following 
experiments. In the MUCL case, the interpolation step itself is 
computationally inexpensive; for a 512x512 grid and radii 0
runtime is around 1s using a degree of 4 in parallelization

4.2.2 VUCL 
Out of all our investigated methods, the 
best performance. Since tuples are only assigned to at most one 
cell, the indexing step is efficient, between 0.15s and 0.4
data set and grid sizes. The interpolation step 
since it includes the gathering step that computes
between the tuples and ci’s center. 
acceptable, varying between 3-4 s for 262
with r=5 (maximum radius). For a more practical radius
the interpolation takes between 1-2s for 262

4.2.3 kNN 
Using a kNN-based list, we investigated 
k on runtime performance. Again, one can observe that
radius has a significant negative impact on the 
performance. Although the memory footprint 
using kNN (at most k-sized grid cell lists)

Figure 2: Overall performance 

Figure 2: Overall performance results 

The proposed strategies were implemented 
DSMS environment, i.e. operators are 

in a pipelined fashion, but we do 
not consider any of the other DSMS components. The 

MacBook Pro with a 2.66 GHz 
620M; a dual core processor with four 

memory at 1067 MHz running Mac 
Java 1.6.0_31 (64 bit).  The discussed 

strategies were implemented as data stream components assuming 

 grid cell 
investigated the runtime performance for MUCL 

VUCL (virtual unordered cell 
(k nearest neighbor cell list). Due to space 

is paper, we present only a small subset of all 
Besides overall runtime 

impact of the neighborhood 
adding tuples to a cell’s list and ran 

using the MUCL strategy 
increases runtime for the indexing step significantly. For example, 

K samples, indexing for radii 0-2 
about 30s. We determined that 

r=5 can be considered the upper search bound for the following 
In the MUCL case, the interpolation step itself is 

computationally inexpensive; for a 512x512 grid and radii 0-5 the 
ree of 4 in parallelization.  

the VUCL method shows the 
Since tuples are only assigned to at most one 

between 0.15s and 0.4s for all 
he interpolation step is more expensive, 

that computes the distances 
’s center. Nevertheless, it is still 

4 s for 262K and a 768x768 grid 
radius). For a more practical radius of r=3, 

2s for 262K samples. 

we investigated both the impact of r and 
Again, one can observe that a larger 

cant negative impact on the runtime 
. Although the memory footprint remains limited 

grid cell lists), tuples still are tested 



against a rapidly increasing number of cells as radius increases. 
Ultimately, we selected r=3 as a neighborhood radius for the data 
sets and grid sizes we tested. Investigating the impact of the k 
parameter (results not shown), the tests reveal that the chosen k 
has little impact on the runtime performance of indexing and the 
interpolation step as well as on the interpolation quality, since the 
runtimes are very similar for all k={5, 10, 15}. 

4.2.4 Comparing overall performance 
Figure 2 depicts a summary of our experiments. The methods are 
tested for all grid sizes, r=3, and the indexing time and 
interpolation time per methods are added. For kNN the list 
length=10 was selected. As can be seen, the VUCL approach is 
the best performing grid cell organization and cell interpolation 
method (green line) of the tested methods. It outperforms all other 
methods by a factor of 6 in runtime, and also exhibits the smallest 
memory footprint, while not suffering interpolation quality. 
MUCL and kNN are very similar in runtime performance with 
kNN being slightly faster, a trend that is more pronounced with 
larger data sets. Due to space limitation, we do not discuss the 
impact of the selected parameters on the interpolation quality.  

5. RELATED WORK 
DSMS have been used for other types of sensor data stream 
management, mostly moving object management in real-time 
traffic analysis [10], RFID management [11], and some 
applications also regarding continuous environmental phenomena 
detection like we propose on this paper [12,13]. Nile-PDT [12] 
takes a different approach to monitoring phenomena and focuses 
on events using the MJoin operator [13]. MJoin joins a sensor 
stream with potentially m other streams to match similar values 
and identify groups of streams with similar values. In our 
approach, each sensor data stream is used once as input for the 
interpolated representation that covers the entire query region 
avoiding expensing m:n joins. Real-time spatial interpolation 
outside the context of DSMS has caught the attention of research 
in research areas of geographic information science. The authors 
of [14] investigate a massively parallel implementation of IDW 
running on a GPU architecture generating one-time snapshots. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we investigated extending data stream management 
systems for real-time spatial interpolation of environmental 
phenomena that are continuous in space and time using up to 
260,000 individual mobile sensor data streams. We proposed and 
evaluated different strategies to optimize a pipelined stream 
operator approach to achieve near real-time spatial interpolation 
throughput, considering the memory footprint, runtime efficiency 
and interpolation quality of the different strategies. We conclude 
that near real-time spatial interpolation in DSMS is efficient and 
scalable. Many interesting open questions remain such as 
optimizing multi-queries and investigate temporal aggregation 
methods. Adaptive methods to deal with data skew are necessary.  
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