
Real-time Spatial Interpolation of Continuous Phenomena
using Mobile Sensor Data Streams

Silvia Nittel
School of Computing and Information

Science
University of Maine, USA

nittel@spatial.maine.edu

J.C. Whittier
School of Computing and Information

Science
University of Maine, USA

john.c.whittier@maine.edu

Qinghan Liang
School of Computing and Information

Science
University of Maine, USA

qliang@spatial.maine.edu

ABSTRACT

Technology advances have created a wide variety of novel,
inexpensive sensors in the millimeter range that can be attached to
or embedded into smartphones. These sensors are now directly
connected to the Internet enabling us to collect high frequency
updates from potentially thousands of mobile sensors densely
deployed over an urban area. Today, data stream management
systems (DSMS) are powerful data processing tools for update
rates of 100,000-500,0000 tuples/s. In this paper, we investigate
extending DSMS for monitoring continuous environmental
phenomena such as air borne toxins or air quality based on up to
250K individual mobile sensor updates per query window to be
spatially interpolated into a smooth, grid-based representation in
near real-time. We propose a stream query operator approach and
investigate different strategies to achieve near real-time spatial
interpolation, while investigating memory footprint, runtime
efficiency and interpolation quality of the different strategies.

Categories and Subject Descriptors

H.2.3 [Database Management, Systems]: Query Processing
H2.8 [Database Management, Database Applications] Spatial
Databases.

General Terms

Algorithms, Performance.

Keywords

Real-time spatial interpolation, DSMS, sensor data streams,
continuous phenomenon.

1. INTRODUCTION
Technology advances have created a large variety of novel,
inexpensive, small-form sensors that can be attached to or
embedded into smartphones. We can expect that next generation
smartphones will be sold with a plethora of built-in environmental
and health sensors. Via smartphones the sensors are directly
connected to the Internet and enable us to collect high frequency
updates from potentially hundreds of thousands of mobile sensors
deployed over a larger urban area [1,2,3] enabling real-time
hazard detection or urban air quality control [3]. Processing and
analyzing such large sets of sensor data streams in real-time
challenges traditional processing strategies using DBMS and GIS
due to the limitations of the DBMS disk-based architecture. Over
the last decade, data stream management systems (DSMS) have

been developed motivated by the throughput needs of real-time
financial analysis and fraud analysis applications. DSMS store
incoming updates only in main memory and process them directly
using non-blocking, pipelined stream query operators.

In this paper, we focus on extending DSMS to handle the
monitoring of continuous environmental phenomena with mobile
sensor data streams in near real-time. Imagine the following
scenario: in a metropolitan area such as Los Angeles (ca. 34,000
mi2) about 2 million people continuously collect environmental
data such as air quality data or volatile organic compounds (VOC)
using their smartphones with a rate of 1 update per 30s; sensor
data streams are either sent to the cloud or distributed servers,
which relay the sensor data to a centralized DSMS. About 67,000
updates per second arrive at the DSMS (for simplicity, we ignore
network latency issues and data skew in this paper). A user query
requests the following information: “Continuously monitor the

VOC spatial field using the sensor streams s where s.type=VOC

and contains(Los Angeles, s.location) using window=15s”.

A user is more interested in the information of the smooth
distribution of the VOC field over the geographic region rather
than the individual sensor data stream updates, their location and
the values (similar to a scatterplot). Thus, the DSMS needs to
spatially interpolate all individual sensor data streams to produce
this smooth representation and provide a grid output. Spatial
interpolation algorithms are widely established [8], but
historically they are tuned towards sparse samples over large
geographic regions and achieving high interpolation quality,
making them computationally complex and expensive [8]. To the

best of our knowledge, real-time spatial interpolation based on

sensor data streams using DSMS has not yet been investigated

today.

With up to 1 million sensor update tuples per query window,
efficient spatial interpolation that generates a near real-time grid
based approximation is computationally challenging and the
detailed research focus of this paper. Historically, a wide variety
of spatial interpolation approaches exists (e.g. Voronoi, Kriging,
Inverse Distance Weighting (IDW), and others) [8]. For our
approach to achieve near real-time execution time in a data stream
setting, re-designing spatial interpolation methods as non-
blocking data streams operators is of key importance. We have to
consider the following: first, main memory is limited in DSMS as
all necessary incoming data and query operators share the
available memory. Secondly, the computational cost of a spatial
interpolation method has to be reduced and we need to provide
scalable and adaptive performance for very large numbers of
sample points. Third, despite these resource restrictions, a
redesigned interpolation method still needs to generate a high
quality interpolation result.

Our contributions: A main challenge of spatially interpolating
sensor update streams is the identification of relevant updates for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGSPATIAL GIS '12, November 6-9, 2012. Redondo Beach,
CA,USA Copyright (c) 2012 ACM ISBN 978-1-4503-1691-
0/12/11...$15.00.

the entire estimated region within a stream query, made especially
challenging by moving sensors. We propose a novel in-memory
grid index to keep track of incoming updates per query window,
and various strategies of organizing the tuples per grid cell
(unordered materialized list, unordered virtual list, and

incremental kNN list). Our extensive tests show that using up to
250k updates per query window can be interpolated in 1-2s using
our proposed methods.

2. PIPELINED OPERATORS FOR SENSOR

STREAM SPATIAL INTERPOLATION
In DSMS, a declarative stream query is translated into a query
execution plan that consists of a directed acyclic stream operator
graph. Each operator contains an input queue, the operator

instance with its state (e.g. necessary cached tuples to perform the
operation), and is connected to an output queue to which the result
tuples are pushed. Operators work in a pipelined, non-blocking
fashion.

Applying this operator principle to a single data stream query that
performs spatial interpolation, the query’s first operator needs to
keep track of all the relevant incoming sensor tuples within the
query window, and assign tuples to the query’s other operators
(see Figure 1). Once all tuples are available, they are interpolated
temporally (not discussed in this paper), and spatially. The query
output is a grid and each grid cell value is interpolated based on
the available updates within the cell and surrounding cells. For
this paper, we chose Inverse Distance Weighting (IDW) as spatial
interpolation method due to its linear computational complexity
[6].

2.1 Pipelined stream query operators for real-

time spatial interpolation
Our proposed pipelined stream operator query plan is depicted in
Figure 1. It is composed of the following stream operators:

Scan/index operator: the scan operator observes the queue of
incoming sensor tuples. For each tuple, it checks whether the
tuple’s location stamp is within the query’s spatial region. It then
assigns it to one or more cells for which it can be used as a
potential kNN value (discussed in Section 3.3).

Grid cell operator: conceptually, a cell operator exists for each
grid cell, and cell operators can potentially run in parallel. The
cell (or a block of cells) operator maintains a list of relevant tuples
per cell, and once all tuples for a query window are available, the
cell’s tuples are pushed to the input queue of the cell interpolation
operator.

Cell interpolation operator: the cell interpolation operator
interpolates all tuples per grid cell and estimates the value for the
grid cell.

Assemble operator: The assemble operator keeps track of all grid
cells for a single grid and generates the output grid.

The individual grid cells, grid cellblocks or the entire grid can be
used as input for other stream query operators, e.g. event
extraction operators.

2.2 Optimizing sensor data stream based

spatial interpolation
While the stream operators for spatial interpolation can be
optimized in different generic DSMS ways (stream partitioning,
or parallel execution of operator instances), two potential
bottlenecks exist: computational complexity and main

Figure 1. Sensor data stream based spatial interpolation.

memory consumption. Both parameters are influenced by the
spatial interpolation configuration as well as the input sample size.
If we parameterize the interpolation to generate a 256x256 output
grid and assume about 100K sensor updates, about 1.5 tuples per
grid cell are available (with uniform spatial sensor distribution).
To improve interpolation quality, we start adding the tuples of
surrounding cells to a cell’s interpolation input to improve quality.
While this improves interpolation quality, this also significantly
increases the memory footprint and the computation time.
Similarly, interpolating finer grids leads to higher computation
cost and a larger memory footprint. In the following sections we
discuss our proposed options to optimize these parameters.

3. OPTIMIZING INDIVIDUAL GRID CELL

INTERPOLATION
As mentioned, we create a grid cell-based index structure between
the scan operator and the interpolation stream operators. The grid-
based index has the same resolution as the spatial interpolation
output grid. In this section, we discuss options of organizing the
tuples per grid cell.

3.1 Materialized unordered grid cell list
First, the tuples per grid cell are assigned to a materialized
unordered tuple list per cell (MUCL). Tuples are inserted in the
order they arrive. Instead of referencing the original tuples, a
cell’s materialized list consists of <distance, value> pairs. The
distance parameter is the spatial distance between the cell ci’s
center and the location stamp of the sensor tuple. Additionally, the
tuples of neighboring cells are added to ci’s MUCL. If we vary the
radius between 0 and 10 around ci, ci’s tuple list can grow up to
1200 elements for r=10 and a 256x256 grid, and around 260K
updates. The tuple list is passed to the cell interpolation operator.

In this configuration, the memory footprint can be excessive since
we a) create new derived tuples from the original tuples, and b)
derived tuples are replicated within many neighboring cells if a
large radius is chosen. On the other hand, this approach
redistributes tuples of under-sampled cells, which works well for
spatial data skew.

3.2 Virtual unordered grid cell list
In the second approach, we avoid the replication of tuples in
neighboring cells and assign each tuple only to the grid cell in
which it is contained (VUCL, virtual unordered tuple list per cell).
Thus, tuples are assigned to at most one grid cell. The cell list
consists of references to the original tuples, which significantly
minimizes the memory footprint and the runtime for the indexing
step. An additional gather operator creates an individual cell list

for ci by iterating over the neighboring cells of c
the partial lists of neighboring cells into a new temporary list,
which now consists of (distance, value) pairs. The temporary list
is used directly for the interpolation operator and
In this configuration, the memory footprint is small
interpolation operator requires more computation

3.3 Materialized kNN grid cell list
In the third option, a fixed length kNN list is created
(k nearest neighbor cell list, kNNCL). Compared to the unordered
and variable sized lists of 3.1 and 3.2 the structure and content of
the kNN list has direct impact on the cell’s interpolation quality;
since k is static the maximum memory footprint of
estimated. Here, the scan operator reads the input tuples and
tuple ti’s location value. It determines whether
cell ci and calculates the distance between ci’s center and
value. The scan operator tests ci’s existing kNN list
the distance of ti with the distances of the existing tuple
list. If the list is not full or ti is located closer
than the furthest of the other existing tuples tj ti is add
Otherwise, ti is discarded. If the list is over capacity, the furthest
tuple tj is discarded.

The scan operator also potentially assigns ti to neighboring
ci. Thus, ti is additionally tested with regard to relevance
surrounding cells of cell ci with a radius r around c
k=10 per ci and generate a 768x768 grid (ca. 600K cells
case even with a very large update set per window
average only 0.2 tuples per cell are present. Additionally testing
tuples against the neighboring cells with a radius
sufficient kNN tuples for each cell ci are found.

4. PERFORMANCE EVALUATION

4.1 Experimental Setup
Since real data sets for our research are not yet available
synthetic data modeled in a NetLogo environment
freely according to a random walk model and
environmental sensor measurements along their paths. We created
a reproducible phenomenon that is smoothly distributed over t
simulated area and changes its gradient slowly and smoothly over
the entire area continuously. We generated the following
populations: 16,384, 32,768, 65,536, 131,072, 262,144 and
524,288. Each agent sampled the phenomenon at the same time
and updated a single sample per query window for the
paper. We tested the grid sizes 256x256, 512x512, and 768x768

cells of ci, and aggregating
a new temporary list,

) pairs. The temporary list
and then discarded.

memory footprint is small, but the
computation time.

cell list
created per grid cell

. Compared to the unordered
structure and content of

interpolation quality;
memory footprint of kNNCL can be

the input tuples and each
 ti is contained in

center and tj’s (x, y)
existing kNN list and compares

with the distances of the existing tuples tj in the
closer to the cell center

is added to the list.
ver capacity, the furthest

neighboring cells of
to relevance to the

around ci. If we chose
600K cells) in this

update set per window (e.g. 130K), on
Additionally testing

radius r=5 assures that

PERFORMANCE EVALUATION

yet available, we used
environment. Agents move

cording to a random walk model and generate
sensor measurements along their paths. We created

t is smoothly distributed over the
its gradient slowly and smoothly over

the following agent
, 65,536, 131,072, 262,144 and

. Each agent sampled the phenomenon at the same time
for the tests in this

We tested the grid sizes 256x256, 512x512, and 768x768.

Runtime Environment: The proposed s
in Java in a limited DSMS environment, i.e. operators are
connected via queues, and work in a pipelined fashion
not consider any of the other DSMS components
experiments were run on an Apple MacBook
Intel Core i7 (Model i7-620M; a dual core pro
virtual cores), 8 GB DDR3 memory at 1067 MHz
OS X 10.7.4 (64 bit) and Java 1.6.0_31 (64 bit)
strategies were implemented as data stream components
a DSMS environment.

4.2 Indexing strategies for
We investigated the runtime performance for
(materialized unordered cell list), VUCL

list) and kNNCL (k nearest neighbor cell list)
limitations in this paper, we present only a small subset of all
results graphically (Figure 2). Beside
performance, we investigated the impact of the neighborhood

radius selected with regard to adding tuples to a cell’s list and
tests with radii = {0,1,2,3,5,10}.

4.2.1 MUCL
As expected, enlarging the radius using the
increases runtime for the indexing step significantly. For exam
for a 512x512 grid with 262K samples, indexing for radii 0
takes about 3s, while r=5 requires about 30s. We determined that
r=5 can be considered the upper search bound for the following
experiments. In the MUCL case, the interpolation step itself is
computationally inexpensive; for a 512x512 grid and radii 0
runtime is around 1s using a degree of 4 in parallelization

4.2.2 VUCL
Out of all our investigated methods, the
best performance. Since tuples are only assigned to at most one
cell, the indexing step is efficient, between 0.15s and 0.4
data set and grid sizes. The interpolation step
since it includes the gathering step that computes
between the tuples and ci’s center.
acceptable, varying between 3-4 s for 262
with r=5 (maximum radius). For a more practical radius
the interpolation takes between 1-2s for 262

4.2.3 kNN
Using a kNN-based list, we investigated
k on runtime performance. Again, one can observe that
radius has a significant negative impact on the
performance. Although the memory footprint
using kNN (at most k-sized grid cell lists)

Figure 2: Overall performance

Figure 2: Overall performance results

The proposed strategies were implemented
DSMS environment, i.e. operators are

in a pipelined fashion, but we do
not consider any of the other DSMS components. The

MacBook Pro with a 2.66 GHz
620M; a dual core processor with four

memory at 1067 MHz running Mac
Java 1.6.0_31 (64 bit). The discussed

strategies were implemented as data stream components assuming

 grid cell
investigated the runtime performance for MUCL

VUCL (virtual unordered cell
(k nearest neighbor cell list). Due to space

is paper, we present only a small subset of all
Besides overall runtime

impact of the neighborhood
adding tuples to a cell’s list and ran

using the MUCL strategy
increases runtime for the indexing step significantly. For example,

K samples, indexing for radii 0-2
about 30s. We determined that

r=5 can be considered the upper search bound for the following
In the MUCL case, the interpolation step itself is

computationally inexpensive; for a 512x512 grid and radii 0-5 the
ree of 4 in parallelization.

the VUCL method shows the
Since tuples are only assigned to at most one

between 0.15s and 0.4s for all
he interpolation step is more expensive,

that computes the distances
’s center. Nevertheless, it is still

4 s for 262K and a 768x768 grid
radius). For a more practical radius of r=3,

2s for 262K samples.

we investigated both the impact of r and
Again, one can observe that a larger

cant negative impact on the runtime
. Although the memory footprint remains limited

grid cell lists), tuples still are tested

against a rapidly increasing number of cells as radius increases.
Ultimately, we selected r=3 as a neighborhood radius for the data
sets and grid sizes we tested. Investigating the impact of the k
parameter (results not shown), the tests reveal that the chosen k
has little impact on the runtime performance of indexing and the
interpolation step as well as on the interpolation quality, since the
runtimes are very similar for all k={5, 10, 15}.

4.2.4 Comparing overall performance
Figure 2 depicts a summary of our experiments. The methods are
tested for all grid sizes, r=3, and the indexing time and
interpolation time per methods are added. For kNN the list
length=10 was selected. As can be seen, the VUCL approach is
the best performing grid cell organization and cell interpolation
method (green line) of the tested methods. It outperforms all other
methods by a factor of 6 in runtime, and also exhibits the smallest
memory footprint, while not suffering interpolation quality.
MUCL and kNN are very similar in runtime performance with
kNN being slightly faster, a trend that is more pronounced with
larger data sets. Due to space limitation, we do not discuss the
impact of the selected parameters on the interpolation quality.

5. RELATED WORK
DSMS have been used for other types of sensor data stream
management, mostly moving object management in real-time
traffic analysis [10], RFID management [11], and some
applications also regarding continuous environmental phenomena
detection like we propose on this paper [12,13]. Nile-PDT [12]
takes a different approach to monitoring phenomena and focuses
on events using the MJoin operator [13]. MJoin joins a sensor
stream with potentially m other streams to match similar values
and identify groups of streams with similar values. In our
approach, each sensor data stream is used once as input for the
interpolated representation that covers the entire query region
avoiding expensing m:n joins. Real-time spatial interpolation
outside the context of DSMS has caught the attention of research
in research areas of geographic information science. The authors
of [14] investigate a massively parallel implementation of IDW
running on a GPU architecture generating one-time snapshots.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we investigated extending data stream management
systems for real-time spatial interpolation of environmental
phenomena that are continuous in space and time using up to
260,000 individual mobile sensor data streams. We proposed and
evaluated different strategies to optimize a pipelined stream
operator approach to achieve near real-time spatial interpolation
throughput, considering the memory footprint, runtime efficiency
and interpolation quality of the different strategies. We conclude
that near real-time spatial interpolation in DSMS is efficient and
scalable. Many interesting open questions remain such as
optimizing multi-queries and investigate temporal aggregation
methods. Adaptive methods to deal with data skew are necessary.

Acknowledgements
This research is based up work supported by the National Science
Foundation under grants CAREER-0448183 and IGERT-
0504494. The authors also would like to thank Christopher Dorr
for his valuable input to this paper.

7. REFERENCES
[1] Campbell, A. T., Eisenman, S. B., Lane, N. D., Miluzzo, E.,

Peterson, R. a., Lu, H., Zheng, X., et al. (2008). The Rise of
People-Centric Sensing. IEEE Internet Computing, 12(4),
12-21.

[2] Campbell, A., & Choudhury, T. (2009). Toward Societal
Scale Sensing using Mobile Phones. Proc. NSF Workshop on

Future Directions in Network Sensing Systems.

[3] Opensense Project, EPFL, Lausanne,
http://opensense.epfl.ch/wiki/index.php/Main_Page

[4] Golab, L., & Ozsu, M. T. (2003). Issues in Data Stream
Management. ACM SIGMOD record, 32(2), 5-14.

[5] Jain, N., Mishra, S., Srinivasan, A., Gehrke, J., Widom, J.,
Balakrishnan, H., Cetintemel, U., et al. (2008). Towards a
streaming SQL standard. Proceedings of the VLDB

Endowment, 1(2), 1379-1390.

[6] Shepard, D. (1968). A two-dimensional interpolation
function for irregularly-spaced data. Proceedings of the 1968

23rd ACM Nat Conf (pp. 517-524). New York, NY.

[7] Renka, R. J. (1988). Multivariate interpolation of large sets
of scattered data. ACM Trans. Math. Softw., 14(2), 139-148.
New York, NY, USA: ACM.

[8] Mitas, L., & Mitasova, H. (1999). Spatial interpolation. In P.
Longley, M. F. Goodchild, D. J. Maguire, & D. W. Rhind
(Eds.), Geographical Information Systems: Principles,

Techniques, Management and Applications (2nd ed., pp.
481-492). Wiley.

[9] Wang, S., & Armstrong, M. P. (2003). A quadtree approach
to domain decomposition for spatial interpolation in Grid
computing environments. Parallel Computing, 29(10), 1481-
1504.

[10] Mokbel, M. F., & Aref, W. G. (2007). SOLE: scalable on-
line execution of continuous queries on spatio-temporal data
streams. The VLDB Journal, 17(5), 971-995.
doi:10.1007/s00778-007-0046-1

[11] Wu, E., Diao, Y., & Rizvi, S. (2006). High-performance
complex event processing over streams. Proceedings of the

2006 ACM SIGMOD international conference on

Management of data - SIGMOD ’06 (p. 407). New York,
New York, USA: ACM Press.

[12] Ali, M. H., Aref, W. G., Bose, R., Elmagarmid, A. K., Helal,
A., Kamel, I., & Mokbel, M. F. (2005). NILE-PDT: A
phenomenon detection and tracking framework for data
stream management systems. Proceedings of the 31st Int’

Conference on Very Large Data Bases, 1295–1298.

[13] Ali, M. H., Mokbel, M. F., Aref, W. G., & Kamel, I. (2005).
Detection and tracking of discrete phenomena in sensor-
network databases. Proceedings of the 17th international

conference on Scientific and statistical database

management, 163–172.

[14] Henneböhl, K., Appel, M., & Pebesma, E. (2011). Spatial
interpolation in massively parallel computing environments.
In R. W. T. F. Geertman S. (Ed.), Proc. of the 14th AGILE

International Conference on Geographic Information

Science (AGILE 2011)

