
Parallelizing Clustering of Geoscientific Data Sets using Data Streams

Silvia Nittel
Spatial Information Science & Engineering

University of Maine
Orono, ME, USA

nittel@spatial.maine.edu

Kelvin T. Leung
Computer Science Department

University of California
Los Angeles, CA, USA

kelvin@cs.ucla.edu

Abstract

Computing data mining algorithms such as clustering on
massive geospatial data sets is still not feasible nor efficient
today. In this paper, we introduce a k-means algorithm
that is based on the data stream paradigm. The so-called
partial/merge k-means algorithm is implemented as a set
of data stream operators which are adaptable to available
computing resources such as volatile memory and process-
ing power. The partial data stream operator consumes as
much data as can be fit into RAM, and performs a weighted
k-means on the data subset. Subsequently, the weighted
partial results are merged by a second data stream oper-
ator. All operators can be cloned, and parallelized. In
our analytical and experimental performance evaluation,
we demonstrate that the partial/merge k-means can outper-
form a one-step algorithm by a large margin with regard
to overall computation time and clustering quality with in-
creasing data density per grid cell.

1 Introduction

Computing data mining algorithms such as clustering on
massive data setsis still not feasible nor efficient today.
Massive data sets such as raster satellite imagery are con-
tinuously produced by remotely sensing instruments with a
data rate of over several TB/day. For instance, the NASA
Earth Observation System’s Information System (EOSDIS)
collects data streams from over 20 different satellite instru-
ments daily in large data archives, and the data is made
available to diverse scientific communities for data analy-
sis. Data analysis includes feature extraction or trend anal-
ysis using diverse data mining techniques.

Since data distribution to scientists represents a signif-
icant problem in itself, one approach to improve this sit-
uation is to apply statistical data compression algorithms
to original data sets, and substitute them with compressed
counterparts. Data compression has to be able to capture the

high order interaction between the attributes of each multi-
dimensional data point as well as their non-parametric dis-
tribution to provide high quality compressed data for further
data analysis. Also, they should be easy to interpret by sci-
entists. For example, a data sets can be partitioned into 1
degree x 1 degree (lat, long) grid cells, and each grid cell
is compressed individually using a multivariate histogram
representation per cell [6]. Multivariate histograms can be
computed using the k-means clustering algorithm. Comput-
ing a multivariate histogram presentation for instance asin-
gle global coverageproduced by the MISR instrument [23]
(see Figure 1), 64,800 individual grid cells have to be clus-
tered each of which can contain up to 100,000 data points
with around 100 attributes. This example elucidates the fact
that implementing data clustering efficiently and in ahighly
scalableway are necessary. Algorithms need to be scal-
able with regard to the overall data set size to reduce overall
computation time, the number of data points within a single
grid cell, the dimensionality of data points, and the utiliza-
tion of available computing resources in order to achieve an
overall high performance computation for massive data set.

1.1 Requirements from a Scalability and Perfor-
mance Perspective

From a scalability and performance perspective, the fol-
lowing criteria are relevant designing a k-means algorithm
for massive data sets:

Handling large numbers of data points: For massive
data sets, an algorithm should be highly scalable with regard
to thenumberanddimensionalityof data points that need to
be clustered. This includes that it should scale automatically
from small to massive data sets.

Overall efficient response time: The algorithm should
adapt to available resources such as computational re-
sources and memory automatically, and maximize the uti-
lization of resources in a greedy way.

High quality clustering results: The results of clus-
tering should provide a highly faithful representation of

1

Figure 1. Swath of the MISR satellite instru-
ment

the original data, and capture all correlations between data
points.

1.2 Contributions of this Paper

In this paper, we propose a scalable implementation of
the k-means clustering algorithm using data streams. Typi-
cally, a k-means implementation requires that all data points
to be clustered are stored in main memory for computa-
tion. However, for massive data sets this is often not possi-
ble. Using a data stream paradigm and re-implementing k-
means using data streams allows to scale clustering to vary-
ing and possible a very large number of points.

Lately, data streams and data streams operators have
been successfully used for querying e.g. continuous credit
card transactions, network traffic or sensor data streams.
Data stream operators are based on the data flow paradigm.
A stream operator consumes a fixed or varying number of
data items from an incoming data stream, processes the
data, and produces result data items which can be processed
by other data stream operators. Several characteristics of
data streams make this paradigm particularly useful and ef-
ficient for processing massive data sets which are stored as
files:

1. Each data item from the data set stored on disk is read
into main memoryonly onceto avoid expensive, mul-
tiple data I/O.

2. An stream operator can store only alimited amountof

state information in volatile memory.

3. There might be limited control over theorder of arriv-
ing data items.

We introduce thepartial/merge k-meansalgorithm
which is implemented as a set of data stream operators
that are adaptable to available computing resources such as
volatile memory and processing power. The partial/merge
k-means algorithm processes the overall set of points in
’chunks’ that can be fit into main memory, and ’merges’
the results of the partial k-means steps into an overall clus-
ter representation. The partial k-means and the merge k-
means are implemented as data stream operators that are
adaptable to available computing resources such as volatile
memory and processors by parallelizing and cloning oper-
ators. Our analytical and extensive experimental tests, we
compare the scalability, performance and clustering qual-
ity of a traditional and a data-stream based k-means im-
plementation. A traditional implementation assumes that
the entirety of data points of a data cell are present in main
memory for computation. The experimental results shows
that the partial/merge k-means implementation scales in an
excellent way with regard to the memory bottleneck, and
produces clustering results that are of significantly higher
quality than generated a traditional k-means algorithm, es-
pecially for large datasets.

The remaining paper is structured as follows: Section
2 states the problem in more detail and discusses related
work. Section 3 contains the detailed description of the par-
tial/merge k-means, and Section 4 includes implementation
details of our prototype. Section 5 contains our experimen-
tal results. We conclude this paper in Section 6 with few
remarks.

2 Clustering Massive Data Sets

Several methods of data compression in sparse high di-
mensional temporal-spatial spaces are based onclustering.
Here, a data set is subdivided into temporal-spatial grid
cells, and each cell is compressed separately. A grid cell
can contain up to 100,000 n-dimensional data points. Dur-
ing clustering, grid cell’s data points are partitioned into
several disjunct clusters such that the elements of a clus-
ter are similar, and the elements of disjunct clusters are dis-
similar. Each cluster is represented by a specific element,
calledcluster centroid. For non-compression applications,
the goal is to partition a data set into cluster; for compres-
sion, we are interested in representing the overall data set
via the cluster centroids.

Two strategies can be used to identify cluster: a) find-
ing densely populated areas in a data set, and dissecting the
data space according to the dense areas (clusters) (density
estimation-based methods), or b) using an algorithm that

attempts to find the clusters iteratively (k-means). In our
work, we will focus on the k-means approach. In detail,
the k-means algorithm can be formalized as described as
follows. K-means is an iterative algorithm to categorize a
set of data vectors with metric attributes in the following
way: Given a setS of N D-dimensional vectors, form k
disjoint non-empty subsets{C1, C2, . . . Ck} such that each
vectorvij ∈ Ci is closer to mean(Ci) than any other mean.
Intuitively, k-means algorithms can be explained with the
following steps:

1. Initialization: Select a set of k initial cluster centroids
randomly, i.e.mj , 1 ≤ j ≤ k.

2. Distance Calculation: For each data pointXi, 1 ≤
i ≤ n, compute its Euclidean distance to each cen-
troid mj , 1 ≤ j ≤ k, and find the closest clus-
ter centroid. The Euclidean distance from vectorvj

to a cluster centroidck is defined asdis(ck, vj) =
(
∑

d=1,D(ckd − vjd)2)1/2.

3. Centroid Recalculation: For each1 ≤ j ≤ k, com-
puted the actual mean of the clusterCj which is de-
fined asµj = 1/|Cj | ∗

∑
v∈Cj

v; the cluster centroid
mj ’jumps’ to the recalculated actual mean of the clus-
ter, and defines the new centroid.

4. Convergence Condition: Repeat (2) to (3) until con-
vergence criteria is met. The convergence criteria is
defined as the difference between the mean square er-
ror (MSE) in the previous clustering iterationI =
(n − 1) and the mean square error in the current clus-
tering iterationI = (n). In particular, we choose
‖ (MSE(n− 1)−MSE(n)) ‖≤ 1× 10−9.

The quality of the clustering process is indicated by the
error function Ewhich is defined as

E =
∑

k=1,K

∑
v∈Ck

‖ µk − v ‖2

whereK is the total number of clusters.
The k-means algorithm iteratively minimizes this func-

tion. The quality of the clustering depends on the selection
of k; also, the k-means algorithm is sensitive to the initial
random choice of k seeds from the existing data points. In
the scope of this paper, we assume that we are able to make
an appropriate choice of k; however, we will vary on the
selection of initial random seeds.

There are several improvements for step 2 that allow us
to limit the number of points that have to be re-sorted; how-
ever, since this is not relevant with regard to the scope of the
paper, we will not consider it further.

2.1 Problem Statement

Clustering temporal-spatial data in high dimensional
spaces using k-means is expensive with regard to bothcom-
putational costsandmemory requirements. Table 1 de-
picts the symbols used in the complexity analysis of the al-
gorithms.

N Number of data points
I Number of Iterations to converge
K Total number of Centroids
G Total number of grid cells
R Total number of experiment run (with different initialk seeds)
p Total number of chunks/partitions used in partial/merge K-Means

Table 1. Symbols used in complexity analysis
of the algorithms.

Computing k-means via atraditional, serial algorithm ,
i.e. scanning a grid cellCj at a time, and compressing it,
and then scanning the next grid cell, allN data points be-
longing to one grid cell have to be kept in memory. The al-
gorithm usesI iterations to converge, and it is runR times
with R different sets of randomly chosen initial seeds. In
this case, the memory complexity isO(N), and the time
complexity isO(GRIKN) wherebyG is the number of
overall grid cells. Here, both the memory and the computa-
tional resources are bottlenecks for the serial k-means.

Two aspects to the memory bottleneck need to be con-
sidered: the volatile memory that is available via the vir-
tual memory management, and the actual memory available
via RAM. From a database perspective, control over RAM
is essential to control any undesired paging effects. If the
relevant data points do not fit into RAM and to avoid un-
controlled paging effects by the underlying operating sys-
tem, the data set has to be broken up, and clustered incre-
mentally. In the database literature, several approaches deal
with the problem of large data sizes ([2, 5, 15, 19, 26]), a
problem that is not considered in k-means algorithms used
in statistics, machine learning, and pattern recognition. We
will refer to this work in more detail in the related work
section 2.2.

Parallel implementationsof k-means deal with the bot-
tleneck ofcomputational resourceswhen clustering large
amounts of high dimensional data. A group of processors
is utilized to solve a single computational problem. Sev-
eral ways of parallelizing k-means using either massively
parallel processor machines or networks of PCs can be con-
sidered1.

As shown in Figure 2,Method A is a naive way of par-
allelizing k-means is to assign the clustering ofone grid

1For price performance reasons, we consider shared-nothing, or shared-
disk environments as available in networks of PC.

Figure 2. Several Ways of Parallelizing K-
Means

cell each to a processor. Method B is the second approach
to assigneach runRi of k-means on one grid cellCj us-
ing one set of initial, randomly chosenk seeds to a pro-
cessor. The third approach calledMethod C that reduces
both the computational as well as the memory bottleneck
is to divide the grid cell into disjunct subsets (clusters) by
choosing a set of initial centroids, and sort all data points
according to the centroids. The subsets are assigned to dif-
ferent slaves. Each slave computes the new mean for its
subset, and broadcasts it to all other slaves. Each slave
computes the Euclidean distance between the data points
of its disjoint subset and all broadcasted means. The data
points withMin(d)(v, ci) are sent to the slave that handles
the centroidci. This approach utilized memory and com-
puting resources efficiently for large data sets, however, it
also introduced an overhead of message passing between
the slaves. Overall, related work in the area does reports of
near-linear scale-up and speed-up for parallelizing k-means

([14, 3]).

Parallelization adds the necessary options to deal with
the computational bottlenecks of clustering, however, op-
tions mentioned above do not deal with the memory lim-
itation appropriately. In each approach mentioned above,
memory limitations still apply, since a well-defined set of
points has to fit into memory (i.e. complete grid cells, or
clusters). An approach is necessary that does not haveany
memory limitation, i.e. it is able to adapt to available mem-
ory in a flexible way independently if 1000, 20,000, 100,000
or 1 mio points have to be clustered. Also, the algorithm has
to be able to exploit available memory and computational
power optimally and in a greedy way.

2.2 Related Work

The related work that deals with the memory bottle-
neck or memory limitations of clustering large data sets
can be found especially in the database literature. Here,
the clustering techniques can be classified into two cate-
gories: partitional andhierarchical. In this paper, we fo-
cus on partitional clustering techniques since we partition a
large temporal-spatial data set into predefined grid cells, and
cluster each grid cell individually. In this case, related work
that deals with the partitional clustering of large spaces such
as CLARANS [26], and BIRCH [31] does apply only in a
limited sense. These approaches consider the overall data
set as the data that needs to be clustered, while in our case
a very large number of grid cells with possibly a large num-
ber of high-dimensional data points has to be clustered very
efficiently. Other work such as CLIQUE [2] is more similar
to our work; this approach finds subspaces in high dimen-
sional data sets that are clustered later on, and it focuses on
identifying this subspaces. However, in our case, the sub-
spaces are well-defined.

The work that is most closely related to our work is [8].
The approach uses a data stream approach to compute k-
means on continuous data streams such as network data, or
web site user click streams. The approach deals with simi-
lar restrictions as our work such as limited memory to store
state; however, their data stream-based k-means implemen-
tation called LOCALSEARCH is designed to cluster one
particular high dimensional spacecontinuously. Although,
LOCALSEARCH also computes data streams in as much
data as can be fit in memory, there is no merge step with
earlier results, an essential step in the partial/merge k-means
implementation that allows to get an excellent cluster rep-
resentation of an overall grid cell.

3 Implementing K-Means Using Data
Streams

The paradigm ofdata streamingis used for different
problems in database research. Traditionally, it has been
used to implement operators in query execution plans and
for parallel DBMS. Lately, it has been applied to process-
ing continuous data streams, and answering queries on such
data streams. The underlyingcomputational modelis the
similar: a data stream based operator consumes one or more
data items from an incoming data stream, processes the
data, and produces an output data item which is stored in
its output queue. The data item is immediately consumed
by the next data stream operator; thus, all data stream oper-
ators process data in a pipelined fashion. The model allows
to automatically clone operators to parallelize operators (see
Figure 2).

Several restrictions apply for both processing continuous
data streams as well as for massive data sets: to minimize
I/0, data is scanned only once, and a data stream operator
gets only’one look’ at the data. Processing massive data
sets, there islittle control over the order of incoming data
itemssince the data items necessary to cluster one grid cell
are likely distributed over a large number of files. The most
significant restriction is that each data stream operator has
a limited volatile memoryto store operator state. Process-
ing massive data sets, the limitation of memory is due to the
fact that aggregation operators such asAverage or a clus-
tering algorithm needs to store state that is too large to fit
into volatile memory. Massive data sets pose the challenge
to implement algorithms via a set of data stream-based op-
erators in a way that they automatically scale to available re-
sources such as memory and CPUs, and exploit parallelism
for overall performance, a problem that is not solved suffi-
ciently today.

As shown in Figure 3, our algorithm consists of the fol-
lowing steps:

1. Scan the temporal-spatial grid cells.
2. Partial k-means on a subset of data points.
3. Merge k-means the results of step 2.
We discuss algorithms for each of these steps in this sec-

tion.

3.1 Scanning massive temporal-spatial data sets

When massive temporal-spatial data sets are collected by
satellite instruments such as MISR ([23]), the instrument
covers ’stripes’ of the earth while it flies over the earth,
and the earth additionally rotates underneath the instrument
(see Figure 1). Over a certain time period, the instrument
achieves complete coverage of the earth; the data, how-
ever, is stored in a ’stripe’-wise manner in complex, semi-
structured files. Pursuing the goal to compress and clus-

ter such data via 1 deg x 1 deg grid cells, all data points
belonging to the grid cell have to be available. Typically,
these data points are scattered over several large files. For
the scope of this paper, we do not consider the optimal I/O
problem, since an optimal I/O strategy depends on the A)
data layout with regard to spatial and temporal ordering of
the data points in a file and B) the partitioning of the data
into files. In this paper, we assumed that the data had been
scanned once, and sorted into one degree latitude and one
degree longitude grid buckets that were saved to disk as bi-
nary files. Furthermore, we assume that grid buckets are
directly used as data input, and that all data points that be-
long to a grid cell arrive sequentially, and in random order.

3.2 Partial K-Means

The k-means algorithm is implemented via several
stream-based operators. At the core are two operators that
deal with the scalability of k-means. The first operator
copes with the memory limitation for very large data sets.
Instead of storing all data pointsv1, . . . vn of a grid cell
Cs in memory, we divide the data ofCs into p partitions
P1, . . . Pp with the condition that all data pointsv1, . . . vm

of partitionPj can be stored into available volatile memory
(physical memory, not virtual memory). The stream oper-
ator partial k-meansselects a set of random k seeds for a
partitionPj , and performs a k-means on the subset of data
points of the overall grid cell until the convergence criteria
is met. This step is repeated for several sets of random k-
seeds, and the representation with the minimal mean square
error is selected to represent the clustering of partitionPj .
The partial k-means operator produces a set ofweighted
centroidscij ∈ Pj {(c1j , w1j), (c2j , wij), . . . , (ckj , wkj)}.
The weightwij is defined as the number of points that are
assigned to the centroidcij in the converge step for partition
Pj . The sum

∑
i=1...k wij is the number of pointsNj in the

partitionPj .
Each partition is clustered independently. We assume a

fixed k is selected for the k-means in all partitions of the
overall grid cell that is appropriate for the data distribution
in the overall grid bucket. Since we assume that thesizeof
partitions is defined by the available memory, each grid cell
is partitioned into about equal-sized chunks of data that are
clustered.

Executing k-means for a data partition the cluster result
is still sensitive to the selection of the initial, randomly cho-
sen seeds. Therefore, to improve the quality k-means can
be run several times with different sets of initial seeds, and
the representation producing the smallest mean square error
is chosen for Step 3.

Space complexity: For a serial k-means, the memory
space complexity isO(N), where N is the number of data
points of the data set to be clusters. For the partial step

Figure 3. Diagram of Partial/Merge K-Means Algorithm

of partial/merge k-means, the space complexity isO(N ′),
where N ′ is the number of data points in a chunk, and
N ′ << N . The space complexity for all partial steps is
O(N ′p) = O(N), but partial steps can be run on different
machines.

Time complexity: The time complexity of serial k-
means isO(NKI), whereN is the number of data points,
K the number of centroids, andI the number of iterations to
converge. If N is large, then I increases exponentially. Us-
ing R sets of different seeds, the time complexity of serial
k-means isO(RIKN).

For the partial step of partial/merge k-means, the time
complexity for a data partitionPj is O(I ′KN ′). K remains
the same. N’ is the number of data points inPj , N ′ = N/p,
thus,N ′ << N . I ′ is the number of iteration to converge
k-means inPj . SinceN ′ << N , consequentlyI ′ << I for
each data partition.

The complexity of all partial k-means steps is
O(N ′KI ′p) wherebyp is the number of partitions. Here,
O(N ′KI ′p) << O(NKI) for largeN .

3.3 Merging K-Means

The merge k-meansoperator is the consumer operator
for partial k-means. The operator basically performs an-
other k-means using the set of all centroids that were com-
puted in the partial k-means for all partitionsP1, . . . Pp.
There are several options to perform this second merge k-
means: a)incrementally, or b) collectively. From a infor-
mation theoretic perspective, the second approach is able
to generate a more faithful representation of the original
data set since the centroids of the chunk that are con-
sumed first by the merge operator are not treated prefer-
entially, and therefore would be involved inall consecutive
incremental merge k-means runs for each new set of cen-
troids. In the collective merge k-means, all sets of cen-
troids Centroids = {Cent0, . . . Centp} and Centj =
{(c1j , w1j), (c2j , w2j), . . . ckj , wkj)} have the same statis-
tical chance to contribute to the overall representation. Each
centroid is weighted with the count of data points that were
assigned to it in the cluster representation for its partition.
This way, the relative size of a partition also contributes to
the merged cluster representation; a centroid that emerged
in a large data partition, or a data partition with more data
points automatically has a larger weight since a larger count

was assigned to it than to a centroid in a small partition.
In more detail, merge k-means computes the follow-

ing algorithm: Given a setS of M D-dimensional
centroids{(c1, w1), (c2, w2), . . . (cm, wm)} where M =∑

p=1,...P kp (k of each partition). Form k disjoint non-
empty subsets{C1, C2, . . . , Ck} such that each centroid
(cij , wij) ∈ Ci is closer to mean(Ci) than any other mean.

• 1. Initialization: Select the set of k initial cluster cen-
troids zi such that the weightwi of zi is one of the k
largest weights inS.

• 2. Distance Calculation: For each data pointci,
1 ≤ i ≤ m, compute its Euclidean distance to each
centroid zj , 1 ≤ j ≤ k, and then find the clos-
est cluster centroid. The Euclidean distance from a
data pointci to a cluster centroidzk is defined as
dis(zk, ci) = (

∑
d=1,D(zkd − cid)2)1/2.

• 3. Centroid Recalculation: For each1 ≤ j ≤ k,
computed the actual,weightedmean of the clusterCj

which is defined asµj = 1/|Cj | ∗
∑

ci∈Cj
ci ∗ wi;

the cluster centroidmj ’jumps’ to the recalculated ac-
tual weighted mean of the cluster, and defines its new
centroid.

• 4. Convergence Condition: Repeat (2) to (3) until
convergence criteria is met; e.g.‖ (MSE(n − 1) −
MSE(n)) ‖≤ 1× 10−9.

The quality of the overall partial/merge k-means algo-
rithm is indicated by theerror functionEpm which is de-
fined as

Epm =
∑

k=1,K

∑
ci∈Ck

((‖ µk − ci ‖2) ∗ wi)
whereK is the total number of clusters.

The k-means algorithm iteratively minimizes this func-
tion. The selection of the data points with the largest
weights as seeds in the initialization forces the algorithm
to take into account which data points are likely to repre-
sent significant cluster centroids already. This would not be
enforces if the set of seeds would be chosen randomly in
this step.

Space complexity: The space complexity of the merge
step isO(Kp), wherebyK is the number of weighted cen-
troids from each partition, andp is the number of partitions.

Time complexity: The time complexity of the merge
step isO(I2Kp), wherebyK is the number of points per
partition, andp partitions are used as input to the merge
step, thus,K ∗p is the number of data points to be clustered.
K is also the number of centroids in the merge step, andI
is the number of iteration to converge.

Remarks: The partial/merge algorithm is designed to be
less sensitive to the size of data partitions by taking weights

into account. However, the question is still open which is
the best choice of k depending on the partition size. For ex-
ample, a small cluster can be represented with a smaller k
than a large partition. Still, weighted centroids can be used
in the merge step. Algorithms such as Entropy Constraint
Vector Quantization (ECVQ) ([12, 6]) seem appropriate to
deal with this problem. ECVQ-based algorithms do not fix
the parameter k at the beginning of the k-means computa-
tion, but define a maximum k, and use a penalizing func-
tion that enforces that data points are more likely assigned
to already large clusters. Therefore, some seeds might be
starved, and can be discarded. This allows to find an opti-
mal k for a partition on the fly.

3.4 Scaling and Parallelizing Partial/Merge K-
Means

The partial/merge k-means algorithm can be considered
as a data flow query specified in the form of a dataflow di-
agram (see Figure 3). Then, each leaf node in the dataflow
query represents a collection of logical data objects, and
non-leaf node represent logical operations that are applied
to streams of data items. The data stream flows from leaf
nodes through the non-leaf operator nodes to the root node
which represent the result of the computation. Producer op-
erator(s) and consumer operator(s) are connected via smart
queues to avoid buffer overflow or underflow. Data flow in
each stage of processing can be maintained with the objec-
tives to minimize query response time as well as maximiz-
ing data throughput by fully utilizing the available comput-
ing resources.

Analyzing the computational expensive parts of the par-
tial/merge k-means algorithm, the partial k-means operator
is by far the most expensive computation since it sorts a
very large number of high-dimensional points to a nearest
centroid (ca. 5000 points, n=6). The merge operator as the
consumer operator is likely to be idle most of the time. The
partial k-means is the most likely operator candidate to be
cloned by the query optimizer, and be sent for execution to
different machines. Several options for parallelization can
be considered.

Option 1is to clone the partial k-means to as many ma-
chines a possible, and compute all k-means algorithms on
the data partitions in parallel, and merge the results on
one of the machines. This step improves the overall data
throughput significantly. This data partitioning scheme has
the advantage that the data for one data partition has to
be sent to one machine only.A second optionis to send
a data partition to several machines at the same time, and
perform partial k-means with a different set of initial seeds
on each machine in parallel. We assume, however, that
overall resources are exploited in a better way, if the first
option is used, and several grid cells are computed at the

same time if more computing resources are available. A
third option is to break up the partial k-means into several
finer grained operators such asChooseRandomSeeds, and
SortDataPoint, ComputeClusterMean, etc. Within
the partial k-means, theSortDataPointSorting is the
most expensive operation, and could be parallelized.

Implementing the partial/merge k-means via a data
stream engine such as Conquest ([24]) the parallelization of
the operators is performed automatically during query opti-
mization when the logical data streaming query is compiled
into a query execution plan, and a concrete physical imple-
mentation is chosen. The k-means operators themselves are
unchanged, and the implementation automatically adapts to
available resources and data set characteristics.

4 Implementation

A prototype of the partial/merge k-means was imple-
mented using the CONQUEST system ([24, 27, 25]). Con-
quest is a stream-based query engine, and provides an ex-
tensible data model that allows introducing user-defined ab-
stract data types, and operators ([25, 27]). Conquest is de-
signed to handle complex queries involving computation-
ally expensive calculations over large data sets in a mas-
sively parallel execution environment. The Conquest query
execution environment is implemented in Java, and allows
queries to be processed and migrated between heteroge-
neous machines running Conquest’s query executors. Con-
quest includes a query re-optimizer [24] for dynamic adap-
tation of long running queries, but we did not exploit this
component in the tests described in this paper. For more
details on Conquest, see ([24, 27]).

The partial/merge k-means was implemented as a col-
lection of user-defined data types and operators in Con-
quest. Several scan operators were used to read the data
from HDF and binary files to populateGridbuckets. As
mentioned, the goal of the implementation was to provide
a prototype for the overall concept; the implementation of
both the partial/merge k-means and the serial k-means for
the tests straight forward. In this version, we do not ex-
ploit many optimizations such as improved search mecha-
nism for finding the nearest centroid of a data point.

5 Experimental Evaluation

The goal of the experimental evaluation is to compare
the scalability of the partial/merge k-means with a serial
implementation as well as the achievedquality of the clus-
tering with a serial k-means that clusters all data points in
the same iteration. Furthermore, we analyze the sensitivity
of the quality of the merge k-means operator with regard to
thesize, andnumberof data partitions that are processed in
the partial k-means.

pts/c P t C0 − Ci t merge Min MSE overallt
75K 10 1,954,614 74,364 15,680 2,028,978

5 5,833,501 7,820 65,740 5,841,321
1 – – 105,020 5,908,854

50K 10
5 3,185,284 8,213 44,760 3,193,497
1 – – 69,441 4,032,755

25K 10 388,988 17,696 25,625 406,673
5 788,098 8,440 22,600 796,538
1 – – 34,879 1,344,528

12,5K 10 148,142 13,216 16,109 161,358
5 183,384 8,513 11,432 191,897
1 – – 17,086 471,651

2,5K 10 33,878 3,347 1,852 37,225
5 30,019 9,679 4,906 39,698
1 – – 3,208 34,412

250 5 17,004 9,158 372 26,162
1 – – 359 3,251

Table 2: Comparing different partitioning sizes

5.1 Experiment Setting

To run experimental tests, we used a Conquest version
that was implemented using JDK 1.3.1. We used four Dell
Optiplex GX260 PCs each of which is equipped with a 2.8
GHz Intel Pentium IV processor, 1 GB of RAM, and a
80 GB hard disk. The PCs were connected using a Net-
gear GS508T GigaSwitch. The Conquest version was NSF
mounted to all PCs; the data files for the test were stored on
the local disk of each machine.

Data Sets: For our test, we created data sets that are
based on a the EOS MISR (Multi-angle Imaging Spectro-
Radiometer) data set [23]. We recreated diverse 1 X 1 (lat,
long) grid cells with the following characteristics:

• We varied thenumber of data points per grid cell
between 250, 2,500, 5,000, 20,000, 50,000, 75,000
points,

• We used a fixed dimensionality for each data point
which is six attributes, and

• We used a fixed k for all configurations(k = 40).

A typical 1’ x 1’ grid cell of the MISR data set contains
about 20,000 data points per grid cell for a monthly sum-
mary. We used the R statistical package to recreate the files
with the same distribution, and created 5 different versions
for each configuration.

Comparisons: In the test, we compared a serial imple-
mentation of k-means with two version of the partial/merge
K-means. In the partial/merge test case, we distinguish
a 5 split and a 10 split of an overall grid cell; here, the
data points of a complete cell were randomly distributed
over 5 or 10 ’chunks’ that served as input for the 5 and

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 10000 20000 30000 40000 50000 60000 70000

Pr
oc

es
si

ng
 T

im
e

(m
se

c)

Number of data points per grid cell

Overall Processing Time: Serial K-Means vs. Partial/Merge K-Means

Serial K-Means (K=40)
Partial/Merge K-Means (K=40,CHUNK=5)

Partial/Merge K-Means (K=40,CHUNK=10)

Figure 4. Execution time serial vs. partial/merge k-means

10 split case. From a temporal-spatial perspective, the ar-
eas of all 5 or 10 chunks were largely overlapping (¿90%).
The code for the serial and the partial k-means implemen-
tation are identical besides that the partial k-means gener-
ates weighted centroids. For the serial implementation, we
loaded the complete grid cell into (virtual) memory, and ran
k-means until it converged. We documented the MSE, num-
ber of iterations until convergence, and overall computation
time for each configuration.

For the partial/merge k-means we assumed an equi-size
partitions of the data points of the overall grid cell. We ran
the partial k-means on the data partitions, and the merge
operator consumed the results and created the overall clus-
tering for the grid cell. We tested two configurations:

• sensitivity of the clustering quality with regard to the
number of partitions of the overall data of a grid cell
(5split/10 split case), and

• speed-up of the processing if the partial k-means oper-
ators are parallelized, and run on different machines.

5.2 Benchmark Results

To assess the quality of the produced clusters, we com-
puted the mean square error. In all cases, we calculated the
MSE after convergence. In the serial case, we calculated
the distance between the centroids and thedata pointsin
their cluster. In the partial/merge k-means, we computed

the weighted distance between the final centroids and the
weighted data pointsin their cluster (both 5-split and 10-
split case). Since the MSE is sensitive to the data distribu-
tion in the grid cell as well as the initial seeds, we ran the
serial k-means with 10 different sets of initial seeds, and
selected the representation with the smallest MSE for com-
parison. In the partial/merge k-means, we computed each
partition with 10 different sets of random seeds, and chose
the best representation for the merge step. The computation
time of each step of random seeds is included in the overall
execution time. Typically, those steps would be executed in
parallel, and thus, the execution time would be significantly
smaller.

Comparing serial k-means with the partial/merge k-
means with regard to overall execution time, it is evident
that the computation time for the serial k-means is increas-
ing exponentially with the number of data points per grid
cell (see Figure 4). The overall execution time of the par-
tial/merge k-mean, however, in most cases is significantly
lower even if all partial k-means steps are run serially on one
machine. The cluster quality between the different types of
implementation is depicted in Figure 5. If a grid cell con-
tains a very small number of points (N < 250), the par-
tial/merge k-means and the serial k-means produce about
the same quality of clustering, however, the execution time
of the partial/merge k-means is about 10 times higher. At
N = 2, 500, the serial k-means is still performing slightly
better than the 5-split partial/merge k-means with regard to

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 10000 20000 30000 40000 50000 60000 70000

M
SE

 (
K

=
40

)

Number of data points per grid cell

Minimun MSE: Serial K-Means vs. Partial/Merge K-Means

Serial K-Means
Partial/Merge K-Means (CHUNK=5)

Partial/Merge K-Means (CHUNK=10)

Figure 5. MSE serial vs. partial/merge k-means

MSE and the execution time which is now about the same
for both. Splitting a 2,500 data point cell into 10 partitions
(10-split), and using partial/merge k-means, however, pro-
duces a very low quality MSE, but it has about the same
overall execution time as 5-split and serial k-means. We
can conclude, that the clustering quality deteriorates if a
limited-sized cell is sliced into chunks which are clustered
independently. Here, all locality of clusters in the data set is
lost.

In the remaining test cases, we can identify the following
trend: atN = 12, 500, partial/merge k-means breaks even,
and the MSE and execution time even run serially on one
machine as in our tests is significantly better than a serial k-
means. The clustering quality for 5-split is about 30% better
than for a serial implementation, and the execution time is
60% lower. The largerN becomes in the following cases,
the better 10-split performs overall. WithN = 125, 000,
the maximum size of points in a grid cell in our tests, 10-
split produces a MSE of 15,680 while the serial k-means
generates a clustering with aMSE = 105, 020. The exe-
cution time for 10-split is about 30% of the execution time
of the serial execution, and in this case the execution time
for a 5-split is almost as high as the serial k-means execu-
tion (if run serially on one machine).

Overall, it can be concluded that the following strate-
gies apply for using partial/merge k-means: a data sets does
need to have a minimum number of data points for a par-
tial/merge k-means being of advantage in (our case with

k=40, it wasN = 500) . Second, the larger the number
of data points in the overall data set, the more effective it is
to partition the data set into smaller subsets to improve MSE
and execution time. Intuitively, the results can be explained
that partial/merge k-means (or a traditional k-means imple-
mentation) performs best if the proportion of centroids to
overall data points is well proportioned. We can exploit
this fact for choosing an optimal ’chunk’ size of a over-
all grid cell for the partial/merge k-means. In our experi-
ments for instance for the optimal chunk size fork = 40 is
≤ 5000 data points per partition. Increasing the number of
data points for a partition, the random pick of seeds is less
likely to be representative. More results can be found in [7].

Overall, we can conclude that the partial/merge stream-
based k-means implementation provides a scalable imple-
mentation with an excellent overall execution time, and pro-
duces cluster representation that outperform the results of
clustering data in high dimensional space directly. This can
be attributed to the fact that it is simpler to find an appro-
priate cluster representation with a large number of k for a
small data set than for a large data set with the same k. Since
the k is chosen randomly, it is more likely to find more rep-
resentative seeds in a smaller data set.

6 Conclusions and Future Work

In this paper we presented the partial/merge k-means as
a highly scalable approach to clustering massive data sets

using a data stream paradigm. We showed that the par-
tial/merge k-means is adaptable to available computing re-
sources such as volatile memory and processors by com-
puting k-means on data partitions that fit into memory, and
merging the partial results, and by parallelizing and cloning
operators. In our analytical and experimental evaluation, we
compared the scalability, performance, and clustering qual-
ity of the partial/merge k-means with a serial implementa-
tion. The results show that the partial/merge k-means pro-
vides a highly scalable and parallel approach, and outper-
forms a serial implementation by a large margin with regard
to overall computation time and achieving a significantly
higher clustering quality. Future work includes experimen-
tations with different ’slicing’ strategies of especially spa-
tial grid cells into sub partitions; for example, data cells
can be partitioned into spatially non-overlapping subcells,
or a mostly overlapping cells as in our test cases. Since
temporal-spatial phenomena do have spatial clustering char-
acteristics, a well-chosen partitioning strategy will improve
overall clustering quality and applicability.

Acknowledgements

This work was partially supported by the National Aero-
nautics and Space Agency under NASA grant number
NCC5-30, and the National Science Foundation under NSF
grant number EPS-9983432.

References

[1] A. Aboulnaga, and S. Chaudhuri,Self-tuning His-
tograms: Building Histograms Without Looking at
Data. in Proc. of the 1999 ACM SIGMOD Intern.
Conf. on Management of Data, June 1999.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Ragha-
van, Automatic subspace clustering of high dimen-
sional data for data mining applications. In Proc.
1998 ACM-SIGMOD Int. Conf. Management of Data,
Seattle, Washington, June 1998.

[3] R. Baraglia, D. Laforenza, S. Orlando, P. Palmerini,
and R. Perego,Implementation issues in the design of
I/O intensive data mining applications on clusters of
workstations.In Proc. of the 3rd Workshop on High
Performance Data Mining, Lecture Notes in Computer
Science, 2000.

[4] S. Berchtold, H.V. Jagadish, K.A. Ross,Independence
Diagrams: A Technique for Visual Data Mining, Proc.
4th Intl. Conf. on Knowledge Discovery and Data
Mining, New York City, 1998, pp. 139-143.

[5] P. S. Bradley, U. Fayyad, and C. Reina,Scaling Clus-
tering Algorithms to Large Databases, Proc. 4 th In-
ternational Conf. on Knowledge Discovery and Data
Mining (KDD-98). AAAI Press, Aug. 1998.

[6] A. Braverman, Compressing Massive Geophysical
Data Sets Using Vector Quantization, Journal of Com-
putational and Graphical Statistics, March 2002.

[7] A. Braverman, E. Fetzer, A. Eldering, S. Nittel,
K. Leung,Semi-Streaming Quantization for Remote-
Sensing Data, Journal of Computational and Graphi-
cal Statistics, Special Issue on Massive Data Streams,
Volume 12 Number 4 Issue Dec 2003.

[8] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha,
and R. Motwani,Streaming-data algorithms for high-
quality clustering, Proceedings of IEEE International
Conference on Data Engineering, March 2002.

[9] S. Chaudhuri, R. Motwani, and V. Narasayy,Random
sampling for histogram construction: how much is
enough?, In Proc. of Int. Conf. Management of Data
(SIGMOD), Seattle, Washington, June 1998, pp. 436–
447.

[10] J. Chattratichat, J. Darlington, M. Ghanem, Y. Guo, H.
Huning, M. Kohler, J. Sutiwaraphun, H. W. To, and D.
Yang, Large scale data mining: The challenges and
the solutions, In Proceedings of Third International
Conference on Knowledge Discovery and Data Min-
ing (KDD-97), August 1997.

[11] C. Cheng, A. W. Fu, and Y. Zhang.Entropy-based
subspace clustering for mining numerical data, In
Proceedings of Internationl Conference on Knowledge
Discovery and Data Mining (KDD’99), 1999.

[12] Chou, Lookabaugh, and Gray,Entropy-constrained
Vector Quantization, IEEE Transactions on Speech,
Acoustics, and Signal Processing, Vol. 37, 1989.

[13] A. Deshpande, M. Garofalakis, R. Rastogi,Indepen-
dence is Good: Dependency-Based Histogram Synop-
sis for High-Dimensional Data, In Proceedings of In-
ternatational Conference ACM SIGMOD, Santa Bar-
bara, May 2001.

[14] S. Dhillon and D. S. Modha.A data clustering algo-
rithm on distributed memory machines, In Large-Scale
Parallel Data Mining, Lecture Notes in Artificial Intel-
ligence, 2000, pp. 245-260.

[15] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and
X. Xu., Incremental clustering for mining in a data
warehousing environment, In Proc. of 24th Interna-
tional Conference on Very Large Data Bases (VLDB),
1998.

[16] V. Ganti, J. Gehrke, R. Ramakrishnan.Mining Very
Large Databases.In IEEE Computer, Volume: 32 Is-
sue: 8, pp. 6875, Aug. 1999.

[17] J. A. G. Gendrano, B.C. Huang, J.M. Rodrigue, B.
Moon, and R.T. Snodgrass,Parallel algorithms for
computing temporal aggregates, In Proc. of the In-
ternational Conference on Data Engineering, Sydney,
Australia, March 1999, pp. 418–427.

[18] P. B. Gibbons, Y. Matias, and V. Poosala,Fast incre-
mental maintenance of approximate histograms, Proc.
of the 23rd International Conference on Very Large
Databases, August 1997, pp. 466-475.

[19] S. Guha, R. Rastogi, and K. Shim,CURE: An efficient
clustering algorithm for large databases, In Proceed-
ings of ACM SIGMOD International Conference on
Management of Data, New York, 1998, pp. 73–84.

[20] M. Halkidi M, M. Vazirgiannis,A data set oriented
approach for clustering algorithm selection, Proceed-
ings of PKDD, Freiburg, Germany, 2001.

[21] Y. Ioannidis and V. Poosala,Balancing histogram op-
timality and practicality for query result size estima-
tion, In Proceedings of ACM SIGMOD Conference,
May 1995, pp. 233–244.

[22] H.V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poos-
ala, K.C. Sevcik and T. Suel,Optimal Histograms with
Quality Guarantees, In Proceedings of 24th Interna-
tional Conference on Very Large Data Bases (VLDB),
New York City, August, 1998, pp. 275-286.

[23] MISR (Multi-Angle Imaging SpectroRadiometer)
Home page, http://www-misr.jpl.nasa.gov/.

[24] K. Ng, Z. Wang, R.R. Muntz, and S. Nittel,Dy-
namic Query Re-Optimization, International Confer-
ence on Scientific and Statistical Databases (SS-
DBM99), Cleveland, Ohio, July, 1999.

[25] K. Ng, and R.R. Muntz,Parallelizing User-Defined
Functions in Distributed Object-Relational DBMS,
International Database Engineering and Applications
Symposium, Montreal, Canada, August, 1999.

[26] R. T. Ng and J. Han,Efficient and Effective Cluster-
ing Methods for Spatial Data Mining, In Proceedings
of the 20th VLDB Conference, Santiago, Chile, 1994,
pp. 144–155.

[27] S. Nittel, K. Ng, and R. R. Muntz,Conquest: CON-
current Queries over Space and Time, International
Workshop ”Integrated Spatial Databases: Digital Im-
ages and GIS” (ISD’99), Portland, Maine, June, 1999.

[28] B. Moon, I. F. V. Lopez, and V. Immanuel,Scalable al-
gorithms for large-scale temporal aggregation, Tech-
nical Report TR 98-11, Tucson, AZ 85721, November
1998.

[29] N. Ramakrishnan and A.Y. Grama.Mining Scientific
Data. Advances in Computers, Vol. 55, 2001, pp. 119–
169.

[30] W. Wang, J. Yang, and R.R. Muntz,STING: A statis-
tical information grid approach to spatial data min-
ing, In Proceedings of the 23rd VLDB Conference,
Athens, Greece, 1997, pp. 186–195.

[31] T. Zhang, R. Ramakrishnan, and M. Livny,BIRCH:
An Efficient Data Clustering Method for Very Large
Databases, In Proceedings of the 1996 ACM SIG-
MOD International Conference on Management of
Data, pp. 103–114.

