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Abstract

Recent research on sensor networks has focused on
efficient processing of declarative SQL queries over sensor
nodes. Users are often interested in querying an underlying
continuous phenomenon, such as a toxic plume, while
only discrete readings of sensor nodes are available.
Therefore, additional information estimation methods are
necessary to process the sensor readings to generate the
required query results. Most estimation methods are com-
putationally intensive, even when computed in a traditional
centralized setting. Furthermore, energy and communica-
tion constraints of sensor networks challenge the efficient
application of established estimation methods in sensor
networks. In this paper, we present an approach using
Gaussian Kernel estimation to process spatial window
queries over continuous phenomena in sensor networks.
The key contribution of our approach is using a small num-
ber of Hermite coefficients to approximate the Gaussian
kernel function for sub-clustered sensor nodes. As a result,
our algorithm reduces the size of messages transmitted in
the network by logarithmic order, thus, saving resources
while still providing high quality query results.

I. Introduction

Today, micro-scale sensing in combination with tiny
computing and communication devices form sensor net-
works which enable us to measure physical environmental
phenomena in a level of detail that we were not able to
observe and measure before.

A. Problem Definition

Sensor networks continuously collect information about
the physical environment. Due to their massively parallel,

distributed, failure-prone and energy-constrained nature,
sensor networks are tedious to program. The database
community takes the standpoint that viewing a sensor net-
work as a distributed database system, which accepts and
processes declarative SQL queries, significantly simplifies
the programming and deployment task of sensor networks.
Approaches such as TinyDB[1], [2] and Cougar[3], [4]
are the first implementations of such small-scale and
distributed DBMSs.

Environmental monitoring is usually interested in
spatially continuous phenomena, such as microclimates
around redwood trees[5] or within vineyards [6]. Spatial
window queries are important for users to understand
the underlying phenomena, while only sensor readings at
discrete and limited node locations are available. Although
many available techniques are able to estimate a contin-
uous phenomenon based on point samples, the current
research challenge is finding a resource-efficient adaption
of those methods for the resource constrained environment
of sensor networks.

B. Our Contribution

In this paper, we present SWOP(Spatial Window Query
Over Phenomena), an efficient algorithm to support in-
network spatial window query processing based on Gaus-
sian Kernel estimation. In general, SWOP first groups
sensor nodes into sub-clusters according to node locations.
Next, SWOP transforms Gaussian weighted readings into
a Hermite series for each cluster representing the detailed
information about local sensor nodes to minimize the
communication cost. In this way, a large set of node
readings can be represented by only a small number of
Hermite coefficient terms, while the communication cost
for node IDs and individual sensor readings is reduced.
Therefore, the total amount of data transmitted inside
the network is reduced by logarithmic order, and the
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computation cost on individual nodes is kept constant.
A centralized computer or a microserver deployed in the
network with more powerful resources evaluates the trans-
formed, minimized data set to generate the final spatial
window query result. Due to the fast convergence speed
of Hermite expansion, the difference between results of
SWOP and the traditional centralized Gaussian Kernel
estimation is minimal. The experimental results confirm
our expectation and demonstrate the high performance of
SWOP for different data sets.

The remainder of this paper is organized as follows:
The preliminaries of SWOP are formulated in Section
II. Section III reviews several estimation techniques, and
Section IV proposes the theoretical foundation of SWOP.
We describe the algorithms of SWOP and analyze its
computation and communication cost in Section V. The
experimental results are illustrated in Section VI. In Sec-
tion VII, we explore the related work. We conclude and
describe the future work in Section VIII.

II. Preliminary

A. Basic Concepts

In this section, we first formalize several relevant con-
cepts for querying continuous phenomena using sensor
networks.

Definition 1: A spatial continuous phenomenon is a
spatial scalar field that represents the variation of a scalar
property over a geographical space. Examples of the scalar
properties are temperature, wind-speed, or the concen-
tration of a gas pollutant in the air. Formally, given a
geographical space S and a class of scalar values V , a
spatial continuous phenomenon is a function F whose
domain is S and codomain is V [7].

Definition 2: A monitored region, R, is a subarea of the
geographical space and is observed by a particular sensor
network. Although the physical world is a 3D Euclidean
space, in this paper we mainly assume a 2D Euclidean
space.

Definition 3: For each point p in R the phenomenon
value is represented by Y (p). Additionally, we use si to
identify an individual sensor node and its spatial location.
Y (si) is defined as the sensor reading and phenomenon
value at the sensor node si. For an estimation result for
any point p in R, we use Ŷ (p).

B. Modeling Sensor Networks And Spatial Win-
dow Queries Over Phenomena

A sensor database system is a “mediator” between users
and the underlying phenomena, as shown by Fig.1. Most of
the current research work focuses on in-network processing

Fig. 1: A model of sensor networks
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of temporal queries. Local processing of temporal queries
at individual nodes benefits from the minimized communi-
cation messages[8], [9]. Spatial queries, especially over an
underlying continuous phenomenon, are not well supported
today, since in-network processing of spatial queries is
much more complex and expensive than processing tem-
poral queries, and requires the inevitable communication
overhead among neighboring nodes.

Spatial queries can be roughly categorized into two
groups based on the spatial predicates in the declarative
SQL. One type is point queries which return values for
particular points in space. Here, the query result can be a
sensor reading at a well-defined sensor node location, or an
estimation result for a point in-between sensor nodes based
on neighboring sensor readings. Another type of spatial
queries is spatial region queries which return values for a
continuous spatial region, R. Different from point queries
at well-defined node locations, point queries in-between
sensor nodes and spatial range queries require additional
estimation techniques. For example, Voronoi diagram and
TIN based approaches were used to support spatial ag-
gregation queries[10]. Processing estimation techniques,
however, requires additional resources from networks.

An important class of sensor network applications is
the observation of spatially continuous phenomena such
as micro-climates or the distribution of gas pollutants.
In this case, simple aggregated statistical information
is not sufficient. Here, a special type of spatial region
queries becomes relevant, i.e. spatial window queries
which return the phenomenon’s continuous distribution
within a well-defined boundary of the monitored region
R, e.g.“SELECT p.temperatureField FROM Phenomenon p
WHERE p.location WITHIN region R”. On the contrary to
spatial aggregation queries, a spatial window query returns
values at arbitrary points in R as shown by Fig.1 and
presents the result in a digital format, such as a digital
image in a user-defined resolution. The number of points in
the result is usually more than the number of sensor nodes
within the spatial window predicate. Additional estimation
techniques are necessary to “fill” the blank points in-
between sensor nodes.

In traditional settings, spatial window queries were
processed in a centralized setting based on all raw read-
ings, while constrained sensor networks favor in-network
processing of estimation techniques to minimize the data
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communication cost among nodes.

III. Answering Spatial Window Queries Us-
ing Estimation Techniques

Before applying estimation techniques in sensor net-
works, we need to answer several questions, such as “how
to represent a spatial window query result” and “how to
process additional estimation techniques in the network”.

A. Voronoi Diagram

Voronoi diagrams provide a simple approximation
model, where the monitored region, R, is partitioned into
a set of “Voronoi cells” based on the locations of sensor
nodes. The phenomenon in a cell is presented by the
sensor reading at the cell center. For example, a spatial
aggregation query result can be represented as a weighted
summary of sensor readings according to the sizes of
Voronoi cells[10]. To answer a spatial window query, a
sensor network needs to find the Voronoi diagram inter-
sected with the query predicate as a set of edges. Suppose
n (n > 3) sensor nodes involved, the upper bound of the
number of edges is 3n− 6, and the lower bound is n− 1
[11]. A distributed algorithm can find the Voronoi edges,
but requires additional resources from the network [10].
Similar neighboring sensor readings can be merged [12],
but such compression ideas are also applicable to raw
sensor readings. Based on the Voronoi diagram, we can
generate a TIN(Triangulated Irregular Network)[10] as a
3D terrain about the underlying phenomenon. TINs are
useful to generate contour maps about the phenomena,
but consume similar resources as Voronoi diagrams do.
Overall, using Voronoi diagram based approaches needs
an expensive algorithm to find and represent the Voronoi
cells, and the estimation results are rather coarse.

B. Spatial Regression

Spatial regression attempts to represent the underly-
ing phenomenon as an equation. The solution of regres-

sion can be represented as,Ŷ (q) =
k
∑

i=1
[wi · fi(q)], where

the estimated value for any point in R is a weighted
summary of predefined basis functions, f ()s. In a 2D
polynomial regression[13], similar to a 1D polynomial
temporal regression[8], f ()s are polynomial functions of x
and y coordinates. For instance, an underlying phenomenon
can be represented by a quadratic polynomial function,
Ŷ (q) = w0 + w1 · xq + w2 · yq + w3 · x2

q + w4 · y2
q + w5 · xqyq,

if xq and yq represent the x and y coordinates of point
q. Another form of spatial regression is known as Kernel
regression, where the basis functions are a set of kernel

functions, k()s[14]. Each kernel function has a unique
kernel center in space, and is typically a predefined non-
increasing function of the Euclidian distance between the
center and the input point. Given k basis functions f ()s and
n sensor readings, to minimize the MSE(Mean Squared
Error), the weights for basis functions are computed by,
W = (∑n

i=1(F(si)T F(si)))−1 ∑n
i=1(F(si)TY (si)), where W

and F() are the vector format of w and f (), i.e. W =
[w1,w2, · · · ,wk]T , and F(si) = [ f1(si), f2(si), · · · , fk(si)].

To represent the estimation result, a sensor network
only needs to return the estimated weights, W , which
require minimal resources from a sensor network com-
pared with transmitting raw sensor readings. One way to
find the estimated W is to aggregate the two matrixes,

n
∑

i=1
(F(si)T F(si)), and

n
∑

i=1
(FTY (si)) within the network,

and compute W outside. For a more heterogenous spatial
phenomenon, more basis functions are required to increase
the estimation quality. However, the cost on networks
increases exponentially when applying more basis func-
tions, since each node needs k2 + k data to aggregate
for k basis functions. Choosing special forms of kernels,
such as Block kernel or Cone kernel[14], in a kernel
regression may relax the data requirement for individual
nodes, but the quality of estimation result is deteriorated
due to the discontinuity of the kernel functions. Another
possible solution is using the distributed matrix inver-
sion operations[14], [15] by exchanging local aggregated
matrices among neighboring nodes. This solution is still
expensive with regard to the communication cost, since
distribution matrix inversion algorithms require more than
one iteration of exchanging local information to achieve
a satisfactory error tolerance. Although the W requires
minimal resources, the communication cost to find W de-
teriorates the performance of constrained sensor networks.
If a network is monitoring a dynamic phenomenon in a
frequent temporal rate, the distributed matrix inversion
operations face more difficulties.

For sensor database systems, efficient processing of
spatial window queries requires the relaxation of the cost of
in-network estimation processing and the in-network rep-
resentation of the query result. The two requirements are
often intertwined. For example, a spatial regression uses
minimal resources to represent the result W , but requires
iterations of communication to find the W . We need to
find an estimation model to minimize both requirements
and still maintain the high quality of spatial window query
results.



4IV. Theoretical Foundation of SWOP

A. Kernel Estimation

SWOP is based on another well-known estimation
model, Kernel estimation. Different from Kernel regression
[14], Kernel estimation is a non-parametric estimation
and can be stated as “total amount of observed values
per unit area”. Kernel estimation is also a special spatial
moving-average method, so the estimation result is robust
against noise. For a point q in monitoring region R, Kernel
estimation estimates the phenomenon value at that point as,

Ŷ (q) =
1
τ2

n

∑
i=1

Y (si)K
( |si−q|

τ

)
,where s,q ∈ R. (1)

In Eq.1, Y (si) represents a reading for the sensor node si,
Ŷ (q) is the estimation result for the point q, and |si− q|
presents the Euclidian distance between the point q and
the sensor node si.

In a simple distributed algorithm[16] similar to [2], [13],
every sensor node evaluates its neighboring points in R. In
a routing tree based protocol, each node aggregates its par-
tial result with the partial results from its children[2], [13].
The size of total data extracted from the network is linearly
scaled by the number of points to represent the Kernel
estimation result. To answer a high resolution spatial query
result, we need more estimation points than the number
of involved sensor nodes. Therefore, a simple distributed
solution often makes no significant improvement compared
with a traditional centralized solution, especially when raw
readings are compressed in the network.

B. Gaussian Kernel and Fast Transforms

The main difficulty of applying Kernel estimation in
sensor networks is the entangled links between estimation
points and sensor readings. Neither direct evaluating sensor
readings outside the network nor direct evaluating estima-
tion points within the network is resource-efficient.

SWOP chooses another way to efficiently process the
Kernel estimation based on the Gaussian kernel. Gaussian
kernel is a very smooth kernel function. Gaussian Kernel
estimation has a wide range of applications, such as finan-
cial analysis[17] and image processing[18], and estimates
the phenomenon value at the point q as,

Ŷ (q) =
1
τ2

n

∑
i=1

Y (si)e−|si−q|2/τ2
,where s,q ∈ R. (2)

To break the entangled links between estimation points
and sensor nodes, SWOP has to transform the Gaussian
kernel. Two fast transforms are available, the FGT(Fast
Gaussian Transform)[19] and the IFGT(Improved Fast
Gaussian Transform). Both fast transforms use an infinite

series to approximate the Gaussian kernel and truncate
insignificant series terms to accelerate the evaluating speed.
This feature is very favorable to SWOP, since the truncated
series can use a small size of data to represent detailed in-
formation about all raw readings. To achieve more efficient
processing in constrained sensor networks, SWOP needs
to choose an appropriate transform which minimizes the
data requirement of communication.

Let’s first explain two transforms in the 1D space.
The FGT utilizes the Hermite expansion to represent the
exponential function as,

e−|si−q|2/τ2
=

∞

∑
j=0

1
j!

(
∆si

τ

) j

h j

(
∆q
τ

)
, (3)

where ∆si = si− s∗, ∆q = q− s∗ and the Hermite functions
h j(x) are defined by

h j(x) = (−1) j d j

dx j

(
e−x2

)
.

The FGT needs to group sensor nodes into sub-clusters.
Here, s∗ is the cluster center which satisfies |si− s∗|/τ <
1, so the Hermite coefficients converge to zero and the
Gaussian kernel can be safely approximated by the first p
terms,

Ŷ (q)≈ 1
τ2

p

∑
j=0

A j(s)h j

(
∆q
τ

)
, (4)

where the Hermite coefficients A j(s) are defined as

A j(s) =
1
j!

n

∑
i=1

Y (si)
(

∆si

τ

) j

. (5)

The IFGT(Improved Fast Gaussian transform)[18] fac-
torizes the Gaussian kernel as

e−|si−q|2/τ2
= e−

∆si
2

τ2 e−
∆q2

τ2 e−
2∆si∆q

τ2 (6)

and uses Taylor expansion to approximate,

e−2∆si∆q/τ2
=

∞

∑
j=0

2 j

j!

(
∆si

τ

) j (∆q
τ

) j

.

In IFGT, Eq.2 is approximated as

Ŷ (q)≈ 1
τ2

p

∑
j=0

C j(s)e−∆q2/τ2
(

∆q
τ

) j

, (7)

where the Taylor coefficients C j(s) are defined as

C j(s) =
2 j

j!

n

∑
i=1

Y (si)e−∆si
2/τ2

(
∆si

τ

) j

. (8)

Here, the cluster center satisfies 2|∆si||∆q|/τ2 < 1, so the
Taylor coefficients converge to zero and terms after the
first p terms can be safely truncated.

To safely truncate the series, both FGT and IFGT
group the sensor nodes into sub-clusters with a radius
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Fig. 2: Coefficient polynomial order
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smaller than the required bandwidth. For each cluster, the
Hermite coefficients, Eq.5, and the Taylor coefficient, Eq.8,
can represent the detailed sensor locations and readings,
therefore are the only data needed from the network, as
shown by Eq.4 and Eq.7 respectively. SWOP need to
choose a transform which requires a smaller number of
coefficient for the same quality criteria. If we assume
ρs = |si−s∗|/τ is the normalized cluster radius, and ρp =
|q−s∗|/τ is the normalized distance between query points
and cluster centers, the Hermite expansion requires ρs < 1
while the Taylor expansion requires 2ρsρq < 1. The Taylor
expansion also requires ρq > 1, or the estimation result
ignores some important readings outside the range[18].
Therefore, the Taylor expansion requires smaller cluster
radiuses than the Hermite expansion does. Even if we
set the cluster size equal in both transforms, the Hermite
series converges faster than the Taylor series does, which
is proven by the error bound of FGT [20] and IFGT [18].
Thus, SWOP chooses the Hermite expansion to transform
raw sensor readings because of the faster convergence
speed of Hermite series and the relaxed cluster size.

C. Data Reduction in High Dimension Space

In a high dimensional space, the FGT treats Eq.3 as a
product of p-terms Hermite expansion along each dimen-
sion, and requires pd terms in total for a d-dimensional
space [19]. In the IFGT, the total number of terms in
a d-dimensional space is

(p+1
d

)
by treating the vector

product as a scalar dot-product in Eq.6 [19]. Differentiating
different dimensions is important when a phenomenon is
not isotropic, i.e. the phenomenon is directionally different,
so the Kernel estimation can use different bandwidths
for different dimensions. Consequently, the data size of
Hermite expansion increases exponentially in a high di-
mensional space, while the data requirement of Taylor
expansion is relaxed, and grows approximately linearly
[18].

Unfortunately, in real applications, the location of sen-
sor node is at least 2D. The constrained environment of
sensor networks requires SWOP to relax the data require-
ment of Hermite expansion in a high dimensional space.
Eq.4 and Eq.7 illustrate that the truncation of both expan-

sions benefits from the elimination of insignificant series
terms with values close enough to 0. Eq.5 and Eq.8 explain
that the significance of both expansion terms is determined
by the polynomial order of the coefficients, since ρs < 1
and 2ρsρq < 1. In the 1D scenario, taking the first p terms
means taking the expansion terms with polynomial order
lower than p− 1. In a higher dimensional space, SWOP
reorders the series terms based on their significance, i.e. the
polynomial order. For example, in a 2D space, the original
Hermite coefficients from the network can be represented
as a 2D array as shown by Fig.2, where each element is
a sum of products of x and y Hermite coefficients. To get
the Hermite coefficients less than the quartic order, SWOP
only requires the upper-left triangular matrix, since the
lower-right triangular elements are much closer to 0 than
the upper-left elements. In this way, SWOP relaxes the
data requirement of Hermite expansion from pd to

(p+1
d

)
based on (p− 1) polynomial order in a d-dimensional
space, and requires the same cost as the Taylor expansion
does. Our experimental results confirm our expectation
that by truncating Hermite series coefficients based on the
polynomial order, SWOP outperforms the original FGT,
since for the same data requirement, SWOP returns better
estimation results than the original FGT does.

D. Processing in Mobile and Static Networks

SWOP needs to group sensor nodes into sub-clusters
according to the node locations and transforms raw read-
ings into the Hermite coefficients. For each sensor cluster,
SWOP is a special aggregation query. For different types
of networks, SWOP uses different processing strategies.

The main difference for processing SWOP in mobile
and static networks is the clustering algorithm. The FGT
does it by dividing the space into regular grid cells, named
‘Boxes’[19]. This clustering algorithm is very simple, but
may introduce many empty boxes due to the uneven
distribution of sensor nodes, especially when nodes are
mobile. The optimal clustering, however, is known to be
NP hard [21]. Several sub-optimal clustering algorithms,
such as K-means, G-means and hierarchical clustering[22],
are still useful for static sensor networks. For a mobile
sensor networks, directly distributed applications of such
sub-optimal clustering algorithms are not efficient, since
the computation and communication cost is too expensive
for the constrained environment. Distributed clustering
algorithms, such as HEED[23] and LEACH[24], provide
solutions for mobile sensor networks. In distributed clus-
tering algorithms, each sensor node can be a cluster head
or belong to a cluster. A sensor node with more remain-
ing energy and more potential communication links with
others more likely announces itself to be a cluster head.
Other nodes can join an appropriate cluster by detecting
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and analyzing the cluster-head announcements. HEED has
several advantages over LEACH, such as supporting multi-
hop clustering and different clustering preferences. Thus,
we choose HEED as the basic clustering method in SWOP
for mobile networks. In SWOP, the cluster radius should
be smaller than the Kernel bandwidth, τ , to satisfy the
convergence condition, while bigger clusters are favorable
to achieve a higher compression rate. Thus, we set the
cluster radius to 0.9τ in SWOP. The only issue of applying
distributed clustering algorithms is the required cluster size
might be larger than the possible communication range of
sensor nodes. In this case, SWOP allows small clusters to
merge together till required cluster radius similar to what
we did in [25].

After being clustered in SWOP, each sensor cluster is
identified by its cluster center, s∗, which may not coincide
with the location of the cluster head node. The detailed
information about individual sensor readings and sensor
locations can be transformed into a small number of Her-
mite coefficients. Because of the fast convergence speed
of Hermite expansion, we expect the difference between
the results of SWOP and centralized Kernel estimation is
minimal. For each cluster in a mobile network, the Hermite
coefficients are a special aggregation data and are routed to
the central computer by the cluster heads [23]. In a static
network, SWOP identifies clusters centrally and dispatches
a set of multi-aggregation queries into the network over
non-overlapped sub-clusters [26].

V. SWOP

A. Normalized Kernel

Although Eq.1 is useful in many cases, the normalized
Kernel estimation model performs better when nodes are
unevenly distributed. The normalized model estimates the
phenomenon value at the point q as the estimation value
by Eq.1 divided by total kernel weights,

Ŷ (q) =

n
∑

i=1
Y (si)e−|si−q|2/τ2

n
∑

i=1
e−|si−q|2/τ2

,where s,q ∈ R. (9)

In Eq.9, τ−2 in the denominator and the numerator is
canceled. Based on the normalized model, the estimation
result of SWOP is robust against the uneven distribution
of sensor nodes, e.g. lossy readings.

B. Description of SWOP Algorithm

After being awoken by a query, in SWOP, a sensor
node can be either a cluster head or a non-head node
belonging to a cluster based on the clustering algorithm. In

a static sensor network, we can apply a centralized, more
optimal and more expensive clustering procedure, while a
distributed clustering algorithm is appropriate for a mobile
sensor network. After identifying the cluster center, the
cluster-head node transforms raw readings into the Hermite
coefficients.

TABLE I: Algorithm on cluster heads

table
1. msg = receiveMsg();
2. if(!fromSameCluster(msg)){
3. if(countNumOfNodesInCluster() > tolerance){
4. numeratorSeries = HermiteExpand(msg,

myLocation);
5. denominatorSeries = HermiteExpand(msg,

myLocation, myReading);
6. myMsg = packMsg(numeratorSeries,

denominatorSeries,clusterCenter);}
7. else myMsg = packMsg(msg,myReading,

myLocation,clusterCenter);
8. routeToCentralBase(myMsg);}
9. else routeToCentralBase(myMsg,msg);

In clustering-based protocols, where a non-head node
usually has a direct communication link with its cluster
head, SWOP allows a non-head node to simply send its
sensor reading and location (or its identity if the location
information is cached) to its cluster head. A cluster head
converts raw readings into Hermite coefficients for both
denominator and numerator in Eq.9, if the number of
nodes in cluster is large enough. If a cluster is small,
the cluster head simply returns raw data including sensor
readings and locations to the central computer as shown
by Tab.I. In a static network, we treat SWOP as a set of
multi-aggregation queries over non-overlapped clusters, so
SWOP is efficiently processed by the method provided by
[26].

TABLE II: Algorithm on the central computer

table
1. get query(specifications);
2. send to sensors(init msg);
3. do wait for(responses);
4. till get all();
5. generate estimation result();
6. return(estimation result);

After receiving a spatial window query, a central com-
puter first invokes the necessary sensor nodes and dissemi-
nates initial messages into the network as shown by Tab.II.
After all cluster heads return their Hermite coefficients,
the central computer needs to reconstruct the weighted
readings based on Eq.3 from the partial expansion and
sum them with uncompressed readings. After the central
computer estimates all points within the spatial window
predicate based on a user-defined resolution, a visual image
is returned.
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C. Analysis of SWOP

1) Computation Cost: The computation cost of the
central computer is related to the number of points m
for a user-defined resolution, the number of clusters k
and the chosen polynomial order p−1. The computation
complexity can be formulated as O(m ∗ k ∗ (p+1

2

)
). The

chosen polynomial order p−1 and the number of clusters k
are much smaller than the number of invoked sensor nodes
n for an acceptable error-tolerance. The computation cost
for a central computer can be relaxed as O(m) which is
linearly relative to the user-defined resolution for a spatial
window query. Further computation acceleration can be
achieved by differentiating the Hermite series around the
estimation points as shown by [19]. In this paper, we ignore
it because the computation is done by a central computer
or a microserver, and the computation cost has no effect
on the network.

The computation cost of a sensor node is dominated by
the clustering procedure, since aggregating Hermite coeffi-
cients requires a constant cost as shown by Eq.5 and Tab.I.
In a mobile sensor network, SWOP chooses a distributed
clustering algorithm which has to consume resources from
the network. If SWOP uses a HEED-based clustering
algorithm and the required cluster radius is smaller than
the communication range, SWOP requires O(1) resources
from the network, which has been proven by [23]. If the
cluster radius is larger than the communication range and
only merge operations among small clusters are allowed
[25], in the worst case in which all nodes need to be
merged into a single cluster, the complexity of the merge
operation can be approximated as O(log(n)) [27] for n
nodes. Thus, the total computation complexity of a sensor
node is O(log(n)) in the worst case and O(1) in general
cases for a mobile network. For a static sensor network, the
clustering procedure can be predetermined by the central
computer, so the computation complexity can be further
relaxed.

2) Communication Cost: The size of the total data
extracted from the network of SWOP is determined by
the number of clusters c and the chosen polynomial order
p− 1. For each cluster, kp + 2

(p+1
2

)
ki bits are needed for

the Hermite coefficients, where kp is the required bit-length
to represent a point for the cluster center s∗ and ki is
the required bit-length to represent a term of the Hermite
series. Whereas, l(kp +ki) bits are needed for the raw data
if l sensor nodes are in the cluster.

The total communication cost within the network de-
pends on particular communication protocols and the
network topology. For a mobile environment, clustering
protocols are preferable and typically the non-head nodes
and their cluster-heads have a direct communication link.
Under the worst topology, in which all cluster-head nodes

form a line structure, receive and relay messages one by
one, SWOP requires 0.5(1+c)c(kp +2

(p+1
2

)
ki) data for the

total communication between cluster head nodes within the
network. If h represents the number of cluster heads before
a particular cluster head on the line to the central base, the
cluster head receives (c− h− 1)(kp + 2

(p+1
2

)
ki) and send

(c−h)(kp +2
(p+1

2

)
ki) to the next hop. In the best case, in

which every cluster head can directly send its messages to
the cluster base, the total communication cost within the
network is c(kp +2

(p+1
2

)
ki).

For a static environment using routing tree based proto-
cols, SWOP is a set of multi-aggregation queries over non-
overlapped spatial clusters. The in-network query process-
ing can be optimized by the algorithm provided by [26],
[28], and SWOP is categorized as a min query in [26].
Further cost evaluation of communication can be found in
[26], [28].

D. Discussion Of SWOP

Most processing techniques only focus on the proper-
ties of the sensor readings or estimation results. SWOP,
however, addresses the spatial properties of the sensor
nodes. The compression gain of SWOP results from the
spatial clustering. For instance, in a dense cluster with
more than [kp +2

(p+1
2

)
ki]/(kp + ki) sensor nodes, the raw

readings can be reduced to the first p− 1 order Her-
mite coefficients in a 2D space. Since SWOP focuses on
the spatial properties of the sensor nodes, the available
compression techniques can also be applied on SWOP’s
transformed data among different clusters in the multi-
hop transmission. Due to normalized Kernel estimation’s
robustness against noisy and lossy samples, SWOP per-
forms well in the noisy and lossy environment of sensor
networks. Furthermore, we do not limit SWOP to static
sensor networks. The denominator in Eq.9 only presents
the spatial properties of invoked sensor nodes. In a static
sensor network, the spatial properties of sensor nodes are
typically cached by the central computer, so more than
half of the communication can be saved by excluding the
denominator in normalized Kernel estimation from the in-
network communication. A centralized clustering can also
find better clustering patterns and therefore help SWOP to
accomplish even a higher data compression rate.

By significantly compressing the 2D or 3D spatial
readings in SWOP, we can treat the transformed data as a
special snapshot in 1D temporal space. Therefore, any 1D
temporal processing method, such as [8], [9], is applicable
to the transformed SWOP data. The temporal processing
of SWOP is another important issue; we do not discuss it
in this paper due to the space limitation.

Overall, the computation complexity of SWOP with
regard to distributed sensor nodes is constant and com-



8
munication messages are minimized. SWOP is practical
for both static and mobile sensor networks.

VI. Experimental Evaluation

SWOP is a set of multi-aggregation queries over non-
overlapped spatial clusters in routing-tree based sensor
networks. We assume SWOP to be running in a more
challenging environment, mobile sensor networks, so we
use a x-y coordinate (128bits) to identify sensor nodes,
choose the HEED-based clustering procedure, and as-
sume the node communication range is bigger than the
required cluster radius (i.e. a direct communication link
between a non-head member and its cluster head). We
implemented SWOP in Java and ran it over different data
sets. In our simulations, the behavior of sensor networks
is simulated by treating each sensor node as a thread
running independently and communicating with each other
by exchanging messages. The data sets consist of two
real data sets from the CalCOFI survey off the coast of
Southern California [29] and from a snapshot from an
experiment in the Intel Lab[30], and two synthetic data
sets. Without losing any generalization, we normalized the
sensor readings to [0,1]. How to find an optimal bandwidth
has been researched well for Kernel estimation[31], and
the fast optimization algorithm [32] for Gaussian kernel
bandwidth is also available. Therefore, we only test SWOP
under pre-chosen bandwidths. Especially, for two synthetic
data sets we set the bandwidth fixed, since we want to test
the SWOP estimation results with alternative estimation
techniques by their processing costs based on different es-
timation qualities. Since many related works[14], [13], [10]
only compare their approaches with respect to centralized
solutions, it is hard to do cross-evaluation among them.
In our experiments, we compare SWOP with alternative
approaches based on real underlying phenomena, i.e. two
synthetic data sets.

A. Estimation Results

To demonstrate the estimation result using SWOP, we
run SWOP multiple times for every data set, and the
estimation results with the highest compression rates were
chosen for display.

The first data set has 372 measurements of salinity
density off the coast of Southern California in the CalCOFI
survey [29], based on which a 30× 30 estimation map
with τ = 0.2 is generated. Figure 3(b) shows the estimation
result based on the traditional centralized Kernel estimation
while the result using SWOP with 0 order coefficients
and the result based on the Voronoi diagram are shown
in Fig.3(c) and Fig.3(a) respectively. In this example, the
x-coordinate is the distance from the coast, y indicates the

depth of the sample, and a lighter point in Fig.3 indicates
the saltier water.

The second set of estimation results based on a smaller
data set from the Intel Lab is illustrated by Fig.4. In this
data set, 48 point samples of the temperature were taken
from a snapshot during an experiment in the Intel Lab[30].
A 30× 30 map is estimated. The results based on the
Voronoi diagram, the centralized Kernel estimation with
τ = 11 and SWOP with 0 order coefficients are shown by
Fig.4(a), Fig.4(b) and Fig.4(c) respectively, where a darker
point indicates the colder temperature.

Both real data sets only provide point samples, but the
validation compared to the real underlying phenomena is
not possible. Therefore, we use two synthetic data sets to
test the effectiveness of SWOP. Two 401×401 continuous
gray scale picture were synthetically generated as shown
in Fig.5(a) and Fig.6(a). These two data sets can be
interpreted as two different distributions of a “real phe-
nomenon”. For example, we can assume two gas leakages
in the upper-left and lower-right corner of Fig.5(a). We set
τ = 80 to test the performance of SWOP based on 21×21
point samples taken from the underlying “phenomenon”
at the interval of 20 pixels. Fig.5(b) and Fig.6(b) illustrate
the results of centralized Kernel estimation. Fig.5(c) and
Fig.6(c) show the SWOP estimation results with 0 order
coefficients for the two synthetic data sets. For the fixed
bandwidth, both centralized Kernel estimation and SWOP
return a truthful estimation result on the synthetic data
#1. For the second data set, the two small “gas leak-
ages” are obscured, which indicates an over-smoothened
result, and the result of SWOP based on the zero order
Hermite coefficients is somewhat distorted compared with
the centralized Kernel estimation result. However, we set
the bandwidth fixed on purpose to compare the SWOP
estimation results with other alternative estimation results
based on their estimation qualities.

The estimation results based on Voronoi diagram show
the layout and readings of sensor nodes directly, but the
results are coarse compared with the results based on Ker-
nel estimation. Furthermore, the cost of Voronoi diagram
based approaches limits their application in constrained
sensor networks. Whereas, even compared with the “real”
phenomena, the results of SWOP still directly illustrate the
real phenomenon distributions.

B. Error Evaluation

Spatial window queries access the distribution of un-
derlying phenomena for a given region. An efficient in-
network query processing targets to minimize the differ-
ence between results of the traditional centralized tech-
niques and itself. The following tests are based on the
average MSE from multiple runs. We first compared MSEs



9

(a) Voronoi diagram (b) Centralized Kernel (c) SWOP

Fig. 3: Query results on the salinity data

figure

(a) Voronoi diagram (b) Centralized Kernel (c) SWOP

Fig. 4: Query results on the Intel lab data

figure

(a) Original Data (b) Centralized Kernel (c) SWOP

Fig. 5: Query results on the synthetic Data #1

figure

(a) Original Data (b) Centralized Kernel (c) SWOP

Fig. 6: Query results on the synthetic Data #2

figure

between the results of SWOP and centralized Kernel esti-
mation as shown by Tab.III based on different truncating
strategies. Tab.III confirms that by ordering the polynomial
order of Hermite coefficients, SWOP achieves high quality

results while relaxing the data requirement compared with
taking the p2 product by FGT. Aggregating more Hermite
coefficients with higher polynomial-order decreases the
difference between results of SWOP and the centralized
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TABLE III: Cost and quality based on different truncating strategies

table
p 1 2 3 4 5 6 7 8 9 10

Number Of Total Terms In 2D Space based on different truncating strategies
p-1 order 1 3 6 10 15 21 28 36 45 55
p terms 1 4 9 16 25 36 49 64 81 100

MSE on the salinity data based on different truncating strategies
p-1 order 6.93E-04 5.20E-04 7.06E-05 2.01E-05 3.98E-06 8.67E-07 1.66E-07 2.78E-08 5.22E-09 7.18E-10
p terms 6.93E-04 4.53E-04 2.48E-05 1.06E-05 7.88E-07 2.54E-07 1.86E-08 4.18E-09 2.83E-10 4.55E-11

MSE on the Intel Lab data based on different truncating strategies
p-1 order 1.03E-03 3.19E-04 1.01E-04 1.39E-05 4.76E-06 5.30E-07 1.27E-07 1.55E-08 2.18E-09 3.01E-10
p terms 1.03E-04 3.19E-04 4.55E-05 5.46E-06 1.18E-06 1.21E-07 1.62E-08 1.79E-09 1.33E-10 1.76E-11

MSE on the synthetic data #1 based on different truncating strategies
p-1 order 7.51E-04 5.24E-04 5.39E-05 9.08E-06 2.19E-06 3.42E-07 5.27E-08 6.47E-09 8.35E-10 7.54E-11
p terms 7.51E-04 4.96E-04 1.01E-04 1.67E-05 5.96E-06 8.55E-07 2.33E-07 2.74E-08 6.36E-09 6.17E-10

MSE on the synthetic data #2 based on different truncating strategies
p-1 order 2.58E-03 3.64E-04 3.03E-04 2.42E-05 1.29E-05 1.13E-06 4.12E-07 3.70E-08 1.04E-08 8.76E-10
p terms 2.58E-03 3.98E-04 1.78E-04 1.27E-05 4.72E-06 3.47E-07 8.44E-08 6.19E-09 1.23E-09 7.32E-11

Kernel estimation. Since the maximal MSE between results
of SWOP and the centralized Kernel estimation results
based on zero-order Hermite coefficients are around 10−3,
we performed other quality tests based on the zero-order
Hermite coefficients.

TABLE IV: Mean squared errors relative to “real” values

table
Data set Kernel SWOP

Synthetic #1 4.6E-03 7.16E-03
Synthetic #2 3.23E-02 4.40E-02

While the first two real data sets only provide us
point samples of a realistic underlying phenomenon, the
two synthetic data sets give us a chance to compare the
estimated results with “real” values as shown by Tab.IV.
The method introduced by [32] can help users to find
the optimal bandwidth according to different phenomenon
distributions. Based on our choice for the first synthetic
data set, the mean squared errors between SWOP result
and the “real” phenomenon are around 10−3. The SWOP
result of #1 set is reliable for many practical purposes. We
fixed the bandwidth for the second synthetic data to test
SWOP against alternative approaches, although the MSE
on the second synthetic data indicates an over-smoothened
result.

C. Cost Evaluation

TABLE V: Required data size for each cluster(in bit)

table
Data set # of clusters Raw data SWOP
Salinity 21 3475.39 253.85
Intel-lab 8.8 1093.12 249.7

Synthetic #1 23.1 3572.66 251.4
Synthetic #2 22.7 3730.04 252.3

In our tests, we use one double (64bits) to present a
sensor reading and two doubles (128bits) to present a

sensor node identity, i.e. its location. We recorded the
average number of clusters and the average size of raw
data and SWOP data for each cluster based on zero order
Hermite coefficients from multiple independent tests on
each data set, as shown by Tab.V. The clustering algorithm
plays an important role in SWOP for the compression gain.
After being clustered, a non-head node requires 192 bits to
send its reading and ID to the cluster head. The message
size for each cluster head to present its cluster members
depends on the chosen order of Hermite coefficient. For the
zero-order, each cluster head needs 256 bits to represent
its member nodes for both the numerator and denominator
in Eq.9. Since small clusters just send their raw readings,
the average message size is a little smaller than 256 bits
as show by Tab.V. Compared with transmitting raw data
for each cluster, SWOP saves 94% messages. The total
communication cost of a network depends on different
communication protocols and network layouts, and is hard
to be simulated. Users can find relevant evaluation results
about it from [26], [28].

D. Comparison With Alternative Approaches

1) Wavelet And Delta Compression: Any compression
algorithm can be applied in clustering protocols to com-
press raw sensor readings for each cluster. We implemented
Haar wavelets and allow cluster heads to transform raw
readings and node IDs into wavelets. Tab.VI illustrates the
experiment results on the two real data sets for different
wavelet coefficient settings. An advantage of wavelets is
that they can present data in different scales and com-
press lossless data based on which we can apply any
analytical models. As shown in Tab.VI, Haar wavelets
can compress lossless data in about 60% size of the
raw data for each cluster. In our experiments, we only
compared the centralized Kernel estimation results based
on wavelet data with the Kernel estimation results on
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TABLE VI: Evaluation on wavelets

table
Coefficient threshold Data size MSE
readings node ID
Intel-Lab data

0 0 698.98 0
0.2 0 449.71 9.53E-04
0.4 0 391.79 1.71E-02
0 6 661.98 1.23E-03
0 10 649.04 2.63E-03

0.3 6 310.82 8.53E-03
0.4 6 317.28 2.49E-02
0.3 8 323.61 8.6E-03
0.4 8 329.81 2.92E-02

Salinity data
0 0 2896.26 0

0.2 0 1967.57 9.63E-04
0.4 0 1919.22 1.11E-02
0 0.10 1529.13 1.93E-03
0 0.2 1534.45 7.43E-03

0.2 0.1 651.84 1.97E-03
0.3 0.1 687.52 7.43E-03
0.2 0.15 619.79 6.43E-03
0.3 0.15 594.22 1.33E-02

original data. By eliminating small wavelet coefficients,
we can achieve higher compression rates, but degrade the
estimated results. However, to achieve a similar quality of
SWOP, wavelet-based methods require a larger data size
than that SWOP does. More tests on the synthetic data
sets and Delta-compression show very similar results of
wavelets, therefore we exclude the detailed comparison
about them due to the space limitation. By evaluating
wavelets, Delta-compression and SWOP, we can conclude
that SWOP requires a smaller size of data but still returns
high quality estimation results.

2) Spatial Regression: Since we fixed the bandwidth
for both synthetic data sets, we can compare SWOP with
different 2D spatial regression methods on the synthetic
data sets based on different estimation qualities. We did
our tests to evaluate the estimation results against the
“real” phenomena and the cost of processing alternative
approaches in the network.

TABLE VII: Evaluation on 2D polynomial regression

table
Polynomial Order MSE # of f ()s
Synthetic data #1

1 7.5E-02 3
2 1.2E-02 6
3 4.8E-03 10
4 1.5E-03 15

Synthetic data #2
1 6.2E-02 3
2 6.0E-02 6
3 4.9E-02 10
4 2.6E-02 15

We run different 2D spatial regression methods in a
traditional centralized setting on all raw data. The results
based on different orders of polynomial regressions is
shown by Tab.VII. With higher orders of polynomial equa-

tions, the estimated results get better. To achieve a similar
quality of SWOP with the current bandwidth setting, a
2D spatial polynomial regression requires 10 or more
basis functions for both synthetic data sets. For Kernel
regression, we test different numbers of kernels based on
different kernel functions separated at fixed intervals with
different bandwidths. Tab.VIII illustrates the minimal MSE
based on different numbers of kernels and different kernel
functions. Tab.VIII also shows the chosen bandwidth and
kernel-center interval for the different kernel functions
to return the best estimation results based on different
numbers of kernels. To achieve a similar quality of SWOP,
the Kernel regression requires 9 or more kernels. Fig.7
and Fig.8 show the estimation results based on the cubic
polynomial, and the best estimation results based on 9 cone
kernels and 9 Gaussian kernels for synthetic data #1 and
#2 respectively.

Generally, both regression estimation methods require
9 or more basis functions to achieve a similar or better
quality of SWOP. To return the final estimation results, we
need at least (81+9) ·ki data from the network. Applying
several types of kernel functions deceases the size of data
exchanged among neighboring nodes, but the estimation
results are not very smooth due to the discontinuity of
kernel functions, i.e. the estimation results based on cone
kernels Fig.7(b). On average, for both synthetic data,
SWOP returns around 23 clusters, and requires a similar
size of data, about 23 ·4 ·ki, from the network for a similar
quality compared with the 2D spatial regression methods.
However, almost all nodes involved in regression methods
need to receive and send the same large size of data. In
SWOP, only the cluster heads near to the central base
or a micro-server need to communicate with the large-
sized messages. The nodes within a cluster and the nodes
at the bottom on a routing tree in SWOP relax their
communication costs. Furthermore, for the current cluster
radius setting 0.9(80) = 72 and the current spatial window
size 401×401, a compact clustering pattern should contain
less than 9 clusters; whereas the distributed clustering
algorithms do not return an ideal clustering pattern. SWOP
can achieve a higher compression gain by applying more
sophisticated clustering methods.

Regression estimation methods focus on minimizing
global errors, while SWOP and non-parametric estimation
methods focus on revealing local variations. If we compare
the estimation results of SWOP and regression estimation
methods to the “real” underlying phenomena, the local
change is better preserved by SWOP than by regression
estimation methods for the similar global quality, MSE.
For example, in Fig.8(a), one of the small peaks has totally
disappeared.
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TABLE VIII: Evaluation on Kernel regression

table
# of kernels Block kernel Cone kernel Gaussian kernel

Min MSEKernel IntervalBandwidthMin MSEKernel IntervalBandwidthMin MSEKernel IntervalBandwidth
Synthetic data #1

16 8.37E-03 110 165 4.06E-04 130 195 4.60E-04 110 95
9 2.09E-02 140 210 1.72E-03 140 210 1.15E-03 160 130
4 6.84E-02 200 300 1.37E-02 210 315 1.19E-02 210 265

Synthetic data #2
16 2.96E-02 120 260 2.83E-02 110 325 3.85E-02 130 65
9 3.78E-02 170 255 4.13E-02 160 310 4.19E-02 150 75
4 6.26E-02 200 300 5.82E-02 200 300 5.89E-02 170 165

(a) Polynomial (b) Cone Kernel (c) Gaussian Kernel

Fig. 7: Alternative estimations on the synthetic data #1

figure

(a) Polynomial (b) Cone Kernel (c) Gaussian Kernel

Fig. 8: Alternative estimations on the synthetic data #2

figure

VII. Related Work

As a basis for many protocols and a key element for
sensor data processing, sensor node clustering algorithms
are important in the field of sensor networks. LEACH[24]
and HEED[23] are two of the most efficient algorithms
available. LEACH first introduced a probability selection
to choose the cluster head. Each node in LEACH can be
the cluster head, and the probability of being a cluster
head is predefined. Nodes rotate the roles of being a non-
head member or a cluster head to save energy. HEED [23]
improves the selection procedure by using other metrics,
such as the remaining energy, to determine a dynamic
probability. HEED has several additional advantages over
LEACH, such as supporting multi-hop clustering.

Due to the constrained environment of sensor networks,
sensor DBMSs favor aggregation queries. TAG[1] provides

such a framework for this type of queries. TAG uses a
tree structure to connect sensor nodes. Each node only
processes and aggregate the partial results from its descen-
dants, so the communication cost can be minimized and
the messages are often kept constant. Trigoni et al. provide
an optimization strategy for multiple aggregation queries
in sensor networks [26], [28]. They categorized different
types of aggregation queries and provided different opti-
mization strategies to reform the communication topology.

As a result of the built-in spatial properties, sensor
readings naturally support spatial queries. Simple aggrega-
tion queries[1], [2], however, often fail to generate correct
answers for spatial aggregation queries if the nodes are not
evenly distributed. Current approaches applied basic spatial
interpolation methods, e.g. Voronoi diagram and TIN[10],
to estimate the aggregation results. Kernel regression
method has also been utilized to support spatio-temporal
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queries in sensor networks[14]. To find the weights for
predefined kernel functions in the network, however, a
sensor network requires iterations of communication [14],
which deteriorates the network performance. In [13], a 2D
polynomial regression was used to control the contour map
quality.

In-network compression techniques are also important
to sensor networks to reduce the in-network resource
consumption. In [33], wavelet based compression has
been introduced, where a sensor network can do pairwise
comparison between sensor readings to generate discrete
wavelets and reduce in-network transmitted data.

VIII. Conclusion And Future Work

In this paper, we presented a novel in-network estima-
tion technique of spatial window queries, SWOP, designed
for answering direct queries on continuous phenomena
based on Kernel estimation method. SWOP breaks the en-
tangled links between estimation points and sensor nodes
by utilizing Hermite expansion. In SWOP, a small number
of Hermite coefficients represents all information about
the total invoked sensor nodes including their locations
and readings. Hence, SWOP minimizes the size of data
and relaxes the computation complexity, compared with a
centralized solution and an ordinary distributed solution.
Our simulation of SWOP tested the data sets of real phe-
nomena, and synthetic data. The result of the simulation
shows that SWOP competes well with other approaches
by relaxing the resource consumptions and still providing
high quality query results.

We will combine the temporal and spatial aspects
together for the future version of SWOP, which is not
covered in this paper.
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