
1 23

Distributed and Parallel
Databases
An International Journal

ISSN 0926-8782
Volume 29
Combined 1-2

Distrib Parallel Databases
(2010) 29:3-30
DOI 10.1007/
s10619-010-7075-2

Efficient tracking of 2D objects with
spatiotemporal properties in wireless
sensor networks

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

Distrib Parallel Databases (2011) 29: 3–30
DOI 10.1007/s10619-010-7075-2

Efficient tracking of 2D objects with spatiotemporal
properties in wireless sensor networks

Guang Jin · Silvia Nittel

Published online: 4 December 2010
© Springer Science+Business Media, LLC 2010

Abstract Wireless sensor networks (WSN) are deployed to detect, monitor and track
environmental phenomena such as toxic clouds or dense areas of air pollution in an
urban environment. Most phenomena are often modeled as 2D objects (e.g., a fire
region based on the temperature sensor readings). People model the objects by their
properties, and like to know how the properties change over time. This paper presents
a distributed algorithm, which uses deformable curves to track the spatiotemporal
changes of 2D objects. In order to save the constrained resources in WSN, our dis-
tributed algorithm only allows neighboring nodes to exchange messages to maintain
the curve structures. In addition, our algorithm can also support tracking of multi-
ple objects. Based on the in-network tracking of deformable 2D curves, we show
that many spatiotemporal properties can be extracted by the in-network aggregation.
Our experimental results have confirmed that our approach is resource-efficient with
regard to the in-network communication and on-board computation.

Keywords Wireless sensor networks · Spatial query processing · Active contour

Communicated by Erik Buchmann.

Dr. Jin performed this work at the department of Spatial Information and Engineering
in the University of Maine.

G. Jin (�)
Intelligent Automation, Inc., Rockville, MD, USA
e-mail: gjin@i-a-i.com

S. Nittel
Department of Spatial Information and Engineering, University of Maine, Orono, ME, USA
e-mail: nittel@spatial.maine.edu

Author's personal copy

mailto:gjin@i-a-i.com
mailto:nittel@spatial.maine.edu

4 Distrib Parallel Databases (2011) 29: 3–30

Fig. 1 Detecting object &
boundary by WSN

1 Introduction

Wireless sensor networks (WSN) are used to observe environmental phenomena.
Many queries about the environmental phenomena are spatiotemporal in nature [29].
For instance, a WSN can be deployed to generate early alarms about wildfires by
using heat-resistent sensor nodes [2]. Sensor nodes can collect sensor readings about
the wildfires and help us to model the wildfires from different angles. The first one is
the field-based model in which a wildfire is a field mapping from the geo-space to an
attribute domain [7]. Each sensor node provides real-time readings at the location of
node. Based on all sensor readings, a dynamic field map about the underlying phe-
nomena can be generated [13, 32]. The constrained nature of WSN, however, limits
the application of field-based models in WSN. From the second angle, users often
abstract objects from the phenomenon fields (i.e., as 2D objects with spatiotemporal
properties). A 2D object covers a spatial region and changes its shape and location
over time. This type of models is known as object-based models. For example, peo-
ple name wildfires and track them. The abstract spatiotemporal properties, such as
the area, location, and topology information, are useful for users to reason about the
evolution of 2D objects.

The first step to implement an object-based model in WSNs is to identify objects.
This issue is similar to tracking moving objects by WSNs [24], but we cannot attach
a hardware identification device, such as RFID [28], to an abstract object. One way
to identity a 2D object is to find the object’s boundary based on user defined thresh-
olds [30]. Figure 1 illustrates an example. Sensor nodes can exchange sensor readings
among neighboring nodes to find local boundary detection results [3, 6, 15, 20]. Since
sensor nodes are discretely distributed, local boundary reports represent points around
the object boundary, such as the red and black dots in Fig. 1. The point boundary re-
ports can be simplified as the inner boundary reports (e.g., the black dots in Fig. 1) or
the outer boundary reports (e.g., the red dots in Fig. 1). The point boundary reports
can provide simple snapshots about the object boundary. In the next step, a WSN
can link boundary points and return the geometric representation about the 2D ob-
jects [25, 34, 37]. Based on the geometric shape (usually polygons), users can define

Author's personal copy

Distrib Parallel Databases (2011) 29: 3–30 5

an object through the shape and location (e.g., the Witch fire from the Witch Creek
Canyon or an Island shape [36]).

WSNs work in a dynamic way. They continuously sense and produce information.
Therefore, the next logical step which is also the focus of this paper is using a WSN
to track particular 2D objects. In this step, a WSN uses geometric shapes to track
2D objects. The tracking shape should be deformable to adapt to the object shape
changes. Through tracking 2D objects, a WSN is able to directly provide abstract
spatial and spatiotemporal properties about the objects. This paper presents an effi-
cient tracking algorithm for WSNs. We use a closed curve to represent a 2D object,
and allow the closed curve to deform and optimize its shape and location to track the
2D object. In addition, our tracking algorithm can also track multiple objects, and
adapt the tracking curves to the topology changes caused by the interaction among
objects (i.e., splitting and merging). In our algorithm, messages are exchanged lo-
cally to maintain the tracking curve. By tracking deformable curves, a network can
produce spatiotemporal properties about a 2D object by the aggregated information.
In this way, many abstract information and queries can be processed within WSN.
The centralized collection of objects’ geometric information is not necessary for our
approach, whereas most related work simply transmit the geometric information to
a central station. Therefore, we expect our approach can save precious resources for
WSN. We have implemented our approach in TinyOS [22], and used TOSSIM [22]
to evaluate our implementation. The experimental results have confirmed that our
algorithm is resource efficient to WSNs.

The remainder of this paper is organized as follows. Section 2 presents the pre-
liminary to abstract 2D objects based on individual sensor readings, and the model
of deformable curves. In Sect. 3, we present our revised deformable curve model for
the constrained WSN. In Sect. 4, we present a resource efficient way to extend the
deformable curve model to track multiple objects. Section 5 provides the detailed
tracking algorithm and a discussion on our algorithm. Based on the distributed track-
ing of deformable curves, Sect. 6 explains how to produce abstract spatiotemporal
properties through the aggregated information. Section 7 presents and analyzes our
experimental results. We explore the related work in Sect. 8, draw our conclusion and
discuss the future work in Sect. 9.

2 Preliminary

This paper mainly focuses on tracking 2D objects. We use a closed curve (or a set of
closed curves) to represent the shape of 2D object. This section presents the prelimi-
naries for detecting and tracking 2D objects in WSN.

2.1 Sensor reading, 2D object and boundary

In this paper, we model the world as a 2D space, R
2. si is used to identify a sensor

node and also its spatial location. We define the immediate neighboring nodes of
sensor node, si , as a node set,

N(si) : {sj |sj AND si can directly communicate}. (1)

Author's personal copy

6 Distrib Parallel Databases (2011) 29: 3–30

Note here, si ∈ N(si), which is defined for our convenience to describe the algorithms
in Sect. 3.

Based on the sensor readings, sensor nodes measure an underlying phenomenon.
In practice, sensor nodes collect local sensor readings at a user defined sampling rate.
The time unit, therefore, is represented as integer values here. A phenomenon is a
spatial scalar field that represents the variation of a scalar property over the 2D space
[7]. We use Y(p, t) to indicate the sensor reading at the location p at the time t . t + 1
indicates the next time when sensors collect new samples. We use a simple definition
for the local object detection results by thresholding sensor readings.

O(p, t) =
{

1, if Y(p, t) ≥ T ;
0, else.

(2)

Based on the given threshold value, T , (2) provides a simple but useful model to de-
rive local object detection results. For example, if Y() presents the temperature field,
we can use O() based on T = 200°C to define the region of a fire. By exchanging the
local sensor readings or object detection results, a sensor node is able to measure the
object boundary that separates the object region from the non-object region.

B(si , t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if O(si , t) = 1 AND
∃sj ∈ N(si), O(sj , t) = 0;

1, if O(si , t) = 1 AND
si is on the network boundary;

0, else.

(3)

Due to the constrained communication range, the number of immediate neighboring
nodes of a sensor node, |N(si)|, is usually limited. As defined in (3), B() is a useful
binary function for the local boundary detection. If |N(si)| is large, (3) need be revised
to increase the boundary detection quality [30]. If sensors are affected by noise, both
(2) and (3) can be extended to a real number function that presents the local boundary
or object certainty [3, 6, 15, 20]. In the physical world, the boundary of a 2D object
must be closed. A WSN, however, may only cover a subregion of a 2D object. Thus,
the network boundary has to be considered as shown by Fig. 1 and (3).

Since sensor nodes are discretely located, boundary reports from (3) are points
along the object boundary. Linking boundary points into a closed curve can better
assist people to understand the spatial properties about a 2D object. To extract spa-
tiotemporal properties of 2D objects, we need to track 2D objects over time. Next,
we need to explain how to track 2D objects by using closed curves.

2.2 SNAKE model

We use {V t ,Et } to indicate a closed curve representing the object boundary at time t .

V t = {
vt

1, v
t
2, . . . , v

t
n

}
, (4a)

Et =
{−−→
vt

1v
t
2,

−−→
vt

2v
t
3, . . . ,

−−−−→
vt
n−1v

t
n,

−−→
vt
nv

t
1

}
. (4b)

Author's personal copy

Distrib Parallel Databases (2011) 29: 3–30 7

Fig. 2 Example of deformable
2D object tracking

A closed curve consists of n vertices and n edges. The vertices are 2D points (i.e.,
vt
i = (xt

i , y
t
i)). The curve is a closed curve, as indicated by (4b). {V t ,Et } is assumed

to represent a simple curve (i.e., the curve does not cross itself). The edges in Et

are directed, as illustrated by (4b). We also assume that a WSN can correctly detect
the object boundary. In short, compared to the resolution of spatial distribution of
sensor nodes, we assume a 2D object needs to be large enough. Due to the monitoring
granularity, the boundary of a small 2D object may not be detected. Since the vertices
in V t are sufficient to describe the edges in Et , as shown by (4b) and (4a), we will
use V t to represent the closed curve in the following parts of this paper. Therefore,
we use V 0 to indicate the initial boundary geometry. We allow vertices to “move”
in order to adapt the boundary geometry to the underlying object, as illustrated by
Fig. 2.

leftVertex(vt
i) =

{
vt
n, if i = 1,

vt
i−1, else,

(5)

rightVertex(vt
i) =

{
vt

1, if i = n,

vt
i+1, else.

(6)

For a vertex vt
i , we name vt

i+1 as the immediate right neighboring vertex of vt
i ;

vt
i−1 is the immediate left neighbor, by facing the interior region at vt

i . As shown by
(5) and (6), the only exception is that vt

1 is the immediate right vertex of vt
n; vt

n is the
immediate left vertex of vt

1. The directed edge connecting vt
i and rightVertex(vt

i) is
the right edge of vt

i , while the directed edge from leftVertex(vt
i) to vt

i is the left edge
of vt

i . vt
i and its immediate left and right neighboring vertices form the local angle

centered at vt
i . For ∠rightVertex(vt

i)v
t
i leftVertex(vt

i), we define a point p is inside this
angle, if p is located on the right of both the right and left edges of vt

i , as illustrated
by Fig. 3.

In the field of computer vision, the deformable curve model is known as the
SNAKE (or Active Contour) model [18]. Here, a deformable curve is used to approxi-
mate an object boundary (e.g., coast lines in remotely sensed images) by using sparse
points and computing a coarse curve first. Then an energy model is used to adjust
the location and number of vertices. In a way, the deformable curve can be treated
as a rubber band around a “solid” object. We can use the rubber band to represent the

Author's personal copy

8 Distrib Parallel Databases (2011) 29: 3–30

Fig. 3 Topological relationship
based on local angle

object’s boundary. The adjustment of the deformable curve is based on basic physical
rules. When the rubber band is stabilized under different physical forces, the overall
elastic energy is minimal. As shown by Fig. 2, the vertices should be able to “move”
over time under the influence of different “forces”, and therefore deform the shape
of the closed curve. At time t , the placement of V t needs to minimize the “elastic”
energy, E, as,

E = αEten + βEcur + γEext. (7)

Equation (7) describes the requirements for a curve to represent an object boundary.
Eten in the first term of (7) is the first order continuity constraint. This term can be
viewed as the tension along the rubber band. If the rubber band is stabilized, the ten-
sion should be equal along the band. In other words, the vertices need to be evenly
distributed along the boundary, which is controlled by Eten. Ecur in (7) is the sec-
ond order continuity constraint, and indicates the deformable curve’s curvature. Ecur
controls the smoothness of deformable curve. Eten and Ecur are also called internal
forces, which model the geometric information about the deformable curve. Given
only Eten and Ecur , a deformable curve cannot represent a concave shape well. Eext,
which is known as the external force or edge strength, provides another force to at-
tach a deformable curve well to a 2D object of arbitrary shape. α, β and γ are relative
weights of each force model, and describe the importance of different forces to the
final shape and location of the deformable curve. By applying the SNAKE model
and using deformable curves to represent 2D objects, distributed sensor nodes are
able to adjust nearby vertices without knowing the global detailed shape of the de-
formable curve. Since the vertex movement is only influenced by different forces, we
need to find appropriate force models, which can be efficiently implemented in the
constrained WSN.

3 In-network tracking of deformable curve

Under the constraints of WSN, sensor nodes should minimize the communication
consumption to maintain the deformable curve structure. In this section, we demon-
strate that our revised SNAKE model achieves this design goal.

3.1 Revised SNAKE model

To use the deformable curve model in WSNs, we constrain that a vertex, vt
i , can only

move to the location of sensor nodes. We call a sensor node, si , a vertex node at
time t , if a vertex vt

j is at the location of si (i.e., vt
j = si). To implement the track-

ing algorithm, appropriate force models must be resource friendly. In our proposed

Author's personal copy

Distrib Parallel Databases (2011) 29: 3–30 9

approach, a node locally detects three states, whether the node is located within the
object (sensed value above a user threshold), outside an object (value below the user-
defined threshold), or on the boundary based on the values of its neighboring nodes.

First, we need to find neighboring boundary nodes, NB(), defined as,

NB(si , t) : {sj | sj can communicate with si directly AND
sj detects the object boundary at t}. (8)

As indicated by (8), NB(si , t) is the set of si ’s neighboring nodes that detect the object
boundary at time t . For simplicity, NB(si , t) may contain si , if si detects the bound-
ary. Sensor nodes are able to prepare local object status and local object boundary
status. Sensor nodes only exchange local boundary detection results among immedi-
ate neighbors to generate NB().

External force models for image processing are an active research area. Most avail-
able models, however, are expensive to the constrained WSN. For example, gradient
vectors can be used as the external force which provides directions towards the 2D
object’s boundary [35]. Generating the gradient vectors, however, requires several it-
erations of messages exchanged among sensor nodes (not just among vertex nodes),
which is expensive.

In our revised SNAKE-based approach, Eext uses the local boundary detection re-
sults provided by NB(). Based merely on NB(), however, an external force may not
work well when a vertex node cannot find the boundary report among its immediate
neighbors. In the balloon model [4], the proposed Eext contains an outward pressure.
By applying the outward pressure, a deformable curve behaves like an inflating bal-
loon to expand itself to represent the object boundary. The balloon model works fine
only if the deformable curve is contained within the real object boundary. We need
the deformable curve to be able to also “deflate”. To better track the object boundary
and save the communication cost, we define our external force model as follows.

Eext(si , t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

NB(si , t), if NB(si , t) �= ∅;

{sj |sj ∈ N(si) AND if NB(si , t) = ∅

sj is inside the curve}, AND O(si , t) = 1;

{sj |sj ∈ N(si) AND sj if NB(si , t) = ∅

is not inside the curve}, AND O(si , t) = 0.

(9)

As shown by (9), the proposed external force, Eext, only requires message ex-
change among neighboring nodes. If some neighboring nodes detect the object
boundary, Eext allows the vertex to move onto anyone among them. Note here, a
vertex may not need to move, if the vertex node at t − 1 detects the boundary at t .

In some situations, a vertex node may lose track of the object boundary (e.g., when
a 2D object moves fast), and none of its immediate neighbors detect the object bound-
ary. Its local object detection result and the curve’s topology information, however,
provide useful information to adapt the curve shape correctly. If a vertex node de-
tects that it is not located within the object and cannot find the object boundary in the
neighboring region, the node must be located in the exterior region of the object. In
this case, the deformable curve needs to “deflate” locally, as shown by Fig. 4(a). The

Author's personal copy

10 Distrib Parallel Databases (2011) 29: 3–30

Fig. 4 External forces when
NB() = ∅

neighboring nodes located in the interior region of the closed curve are the candidate
locations for the vertex. As illustrated by Fig. 4(b), if a vertex node detects that it is
located inside of the object and finds no boundary in its nearby region, the deformable
curve “inflates” locally. The neighboring nodes located in the exterior region of the
closed curve are the candidate locations for the vertex. Vertices can eventually find
the object boundary by using the proposed Eext. Although our Eext is light-weighted,
our model flexibly adapts the deformable curve to track the underlying 2D object.

Equation (9) provides several candidate locations for a vertex node to move to.
A vertex can only move to one location among the candidate locations. To calculate
the energy weight among the candidate locations, we revise (7) as,

E = αEten + βEcur. (7′)

Based on (7′), a vertex moves to the location with the minimal energy weight among
the candidate locations given by (9).

The internal forces need to be resource efficient as well. A general model for Eten
is defined by,

dt−1 − ∣∣vt
i − vt

i+1

∣∣ ,
where dt−1 indicates the average length of edges,

dt−1 = 1

n

∑
i=1

n
∣∣vt−1

i − vt−1
i+1

∣∣.

This model requires updating the average edge length, dt−1, among all vertex nodes
if V t changes. Perrin et al. proposed a new Eten model for detecting object bound-
aries in digital images [31]. Perrin et al. showed that their Eten model constrains the
vertices to be evenly dispersed along the curve. So their Eten model is ideal for our
tracking quality requirements. We slightly modify their Eten model. Our Eten model
is resource-efficient and only requires message exchange among consecutive vertex
nodes, as defined by,

Eten = Var
(∣∣vt+1

i − vt
i−1

∣∣, ∣∣vt+1
i − vt

i+1

∣∣). (10)

For a candidate location, vt+1
i , of vt

i , Var() measures the variance of the lengths of
two consecutive edges, |vt+1

i − vt
i−1| and |vt+1

i − vt
i+1|. When the two edges are

equal length, Eten is zero. To minimize Eten, the vertices need to be located at equal
intervals along the curve.

Author's personal copy

Distrib Parallel Databases (2011) 29: 3–30 11

Fig. 5 Examples of dynamic adding and folding

When the 2D object expands and shrinks, the deformable curve, like the rubber
band, should expand and shrink simultaneously. The parameter Dsplit controls the
number of vertices when the curve deforms.⎧⎪⎨

⎪⎩
|vt

i+1 − vt
i | ≤ Dsplit, No change;

|vt
i+1 − vt

i | > Dsplit, Add a vertex between
vt
i and vt

i+1.
(11)

When the distance between vt
i and vt

i+1 is larger than Dsplit, a new vertex is added
between vt

i and vt
i+1. As illustrated by Fig. 5(a), to ensure the even vertex spacing,

the new vertex is placed at
(

xt
i + xt

i+1

2
,
yt
i + yt

i+1

2

)
. (12)

Dsplit ensures the largest disparity in the vertex spacing, and influences the tracking
quality of the deformable curve. When the deformable curve shrinks, multiple ver-
tices may move to a single sensor node. Some vertices moving onto a single node are
consecutive neighbors, and can be folded into a single vertex, as shown by Fig. 5(b).
A more complex case will be explained in Sect. 4.

Ecur controls the curve’s smoothness. We use the value of the inner angle to repre-
sent Ecur . The second order curvature can be used to represent the smoothness, which
minimizes the angle variation of three consecutive angles [31]. In short, the second
order curvature model requires that the three consecutive angles are similar. To find
the curvature value of the next location, p, for v1

3 in Fig. 6(b), the second order cur-
vature model needs to know the value of three internal angles, ∠pv1

2v1
1 , ∠v1

4pv1
2 and

∠v1
5v1

4p. The second order curvature needs a vertex location to be updated among
five consecutive vertices, which is expensive in communication. In Fig. 6(b), the up-
dated location of v1

3 should be sent to v1
1 , v1

2 , v1
4 and v1

5 . To save the energy and
communication cost, we choose the first order curvature defined as,

Ecur = Var
(
π,∠vt

i+1v
t+1
i vt

i−1

)
. (13)

As indicated by (13) and illustrated by Fig. 6(a), the first order curvature model is
biased towards straight lines. The first order curvature requires a vertex update to be

Author's personal copy

12 Distrib Parallel Databases (2011) 29: 3–30

Fig. 6 Curvature models

exchanged only among three consecutive vertex nodes. For example, in Fig. 6(a), the
updated location of v1

3 should only be sent to v1
2 and v1

4 . Our experiments showed that
the first and second order curvature models have almost the same tracking quality.
One possible explanation is that Ecur dominates the final curve shape only when
Dsplit is large. Similarly along a rubber band, a local bend only affects a nearby area.

The revised Eext, Eten and Ecur models are light-weighted, and need message
exchange among neighboring nodes only. Based on the revised Eext, Eten and Ecur
models, a WSN efficiently “moves” vertices and therefore tracks the underlying 2D
objects. We also need to consider the topology changes when multiple 2D objects
interact, which will be explained by the next section.

4 Tracking of multiple objects

When multiple 2D objects change their shapes and locations in space, basically
two types of topological changes (i.e., splitting and merging) are involved [14]. De-
formable curves representing 2D objects consequently should adapt their shapes to
the topological changes. The original SNAKE model is too rigid to do so, since
the connected edges are unbreakable. A flexible model is necessary for deformable
curves to adapt to the topological changes. Note here, we do not consider the dimen-
sional changes in this paper. In other words, we assume that the remaining objects
after the splitting or merging changes need to be large enough for a WSN to correctly
detect the boundary and treat them as 2D objects.

4.1 Breaking and reconnecting edges

Today, several revised SNAKE models have been proposed to use breakable curves
to track 2D objects [21, 27]. Most models are based on a centralized infrastructure,
which is not suitable for the constrained WSN. In the T-Snake approach [27], the
space is partitioned into non-overlapping triangles. In a triangle cell, nonconsecutive
edges need to be removed and replaced by a single edge. The T-Snake approach,
however, faces the ambiguity caused by different triangulation patterns. In Fig. 7,
the solid lines indicate the edge of deformable curves; the dotted lines represent the
triangulation partition. The edges in Fig. 7(a) are identical to the edges in Fig. 7(b).
Due to the different triangulation patterns, the edges in Fig. 7(a) need to be removed,
whereas the same edges in Fig. 7(a) can be kept. A global uniform triangulation

Author's personal copy

Distrib Parallel Databases (2011) 29: 3–30 13

Fig. 7 Ambiguity caused by
different triangulation patterns

Fig. 8 Ambiguity when two 2D
objects touches at a single point

pattern is necessary for the T-Snake approach. Finding the global triangulation pattern
in the constrained WSN, however, has to consume additional resources, especially if
sensor nodes are unevenly distributed or nodes are mobile [12, 32].

One observation is that any 2D object can be represented by a set of simple closed
curves. A 2D object can contain holes. A hole can also be represented by a simple
closed curve. Nonconsecutive edges in a simple closed curve cannot intersect, overlap
or touch with each other. Purely based on the geometric shape of deformable curves,
our model focuses on converting non-simple curves into simple curves.

Two 2D objects can touch at a single point. If we try to reconnect the edges linked
to the same point, we shall face an ambiguity. The reconnected edges simultaneously
can indicate a 2D object is splitting, as illustrated by Fig. 8. To better adapt the de-
formable curves to the topological changes, our model is based on the detection and
removal of overlapping and intersecting edges.

The original SNAKE model is based on physical laws. It is intuitive to explain our
model by the example of soap bubbles. When two soap bubbles are merging, some
parts of the bubble walls from two bubbles overlap first. Then the overlapping bubble
walls break, and two bubbles become a single bubble. Figure 9 shows a zoom-in pic-
ture of Fig. 10(b). Let us consider one end-point of the overlapping edges in Fig. 9.
The end-point is actually covered by two different vertices that were previously lo-
cated at different points but moved onto the same point. By removing the overlapping
edges, we get two open curves. One of the vertices on the same point then has the
right edge removed; another one has the left edge removed. The two vertices are lo-
cally reconnected and merge into a single vertex. The merged vertex now has the left
and right edges from remaining edges of the previous two vertices. In this way, two
open curves are reconnected into a single closed curve.

When a bubble is splitting, a part of the bubble wall overlaps another part from
the same bubble, as illustrated by Fig. 10(a). This can also be represented by Fig. 9.

Author's personal copy

14 Distrib Parallel Databases (2011) 29: 3–30

Fig. 9 Removing and
reconnecting edges

Fig. 10 Example of splitting
and merging

The only difference is that the edge direction is reversed, and the interior and exterior
regions are reversed. An interesting observation from Fig. 9 is that the detection of
overlapping edges can be done locally on distributed nodes.

Author's personal copy

Distrib Parallel Databases (2011) 29: 3–30 15

Fig. 11 Removing and
reconnecting intersecting edges

Due to the discrete distribution of sensor nodes, the vertex movement cannot be
continuous. In some cases (e.g., uneven node distribution), edges may intersect with
each other. Since the closed curves are simple, the intersecting edges need to be re-
moved. We get open curves after removing the intersecting edges. As explained by
Fig. 11, those vertices located on the non-boundary region should be removed, when
the edge intersection occurs. For a pair of removed intersecting edges, two vertices
(one without left neighbor, another one without right neighbor) may remain. A new
edge, therefore, should be added here to reconnect the open curves, as shown by
Fig. 11. The two vertices on the open curves consequently are consecutive vertex
neighbors. As explained above, Dsplit is the longest edge length. Suppose Rcomm in-
dicates the communication range of wireless radio. Due to the broadcasting nature of
wireless channel, if Dsplit ≤ √

2Rcomm, no additional communication is required to
detect the intersecting edges based on our in-network deformable curve tracking.

5 Algorithms

In the proposed approach, vertex location information is exchanged among neighbor-
ing vertex nodes. When a vertex vt

i is located at a particular sensor node, the sensor
node needs to know the locations of vt

i−1 and vt
i+1. By assuming that the vertices are

facing the exterior region, we use the “LEFT” and “RIGHT” relations to identify the
neighboring vertices. For the vertex node of vt

i , we use two local variables, leftVertex
and rightVertex, to store its left and right neighboring vertices vt

i−1 and vt
i+1. A timer

is used in our implementation to control the sensors and the vertex movement. When
time elapses from t to t + 1, sensors collect new local readings. Afterwards, sensor
nodes exchange local object and boundary detection results. We use GPSR [17] as the
communication protocol, and assume a position service running on the background
[5, 23]. Sensor nodes therefore communicate with each other based on their locations.

Author's personal copy

16 Distrib Parallel Databases (2011) 29: 3–30

We also assume that the background services handle node failures and communica-
tion failures.

5.1 Pseudo-codes and description

Based on the neighboring boundary detection at time t + 1, a vertex node uses the
location of previous neighboring vertices at time t to calculate the vertex’s next loca-
tion, as shown by Algorithm 1.

After exchanging local boundary detection results, a vertex node finds nearby
nodes, which detect the object boundary. If a neighboring node detects the bound-
ary, the node is a candidate for the vertex’s next location as shown by Algorithm 1.
If the vertex node cannot detect the boundary in the nearby area, the node uses the
local angle’s topology information and its local object detection result to find the next
candidate location. If a vertex node detects neither the object nor the object bound-
ary in the nearby area, the candidate locations are within the interior region defined
by the local angle. If a vertex node detects the object but does not find the object
boundary in the nearby area, the candidate locations are within the exterior region, as
illustrated by Algorithm 1. Among the candidate locations, the location with the min-
imal tension and curvature energy is the next location for the vertex. A designation
message is sent to the sensor node located at the next location. When a sensor node
receives a vertex movement message, the sensor node caches the vertex movement

Algorithm 1 Finding the next location of vt
i

Require: Sensor nodes exchange local object detection, objectDetected, and boundary detection results among immediate
neighboring nodes, NSensors. The neighboring boundary reports are stored into a point array NBReports.

Ensure: vt
i

moves to a node at location vt+1
i

with minimal energy.

1: if NBReports.length �= 0 then
2: CandLocs ⇐ NBReports
3: else
4: for all s ∈ NSensors do
5: if objectDetected = FALSE then
6: if s INSIDE ∠vt

i+1vt
i
vt
i−1 then

7: CandLocs.add(s)

8: end if
9: else
10: if s OUTSIDE ∠vt

i+1vt
i
vt
i−1 then

11: CandLocs.add(s)

12: end if
13: end if
14: end for
15: end if
16: MinE ⇐ +∞
17: r ⇐ vt

i+1
18: l ⇐ vt

i−1
19: for all s ∈ CandLocs do
20: Eten ⇐ Var(|s − l|, |s − r|)
21: Ecur ⇐ Var(π,∠rsl)

22: E ⇐ αEten + βEten
23: if E < MinE then
24: MinE ⇐ E

25: nextLoc ⇐ s

26: end if
27: end for
28: return nextLoc

Author's personal copy

Distrib Parallel Databases (2011) 29: 3–30 17

into a cached vertex movement array, CVM. An element in CVM contains the vertex’s
previous location, and the vertex’s previous left and right neighboring vertices. Since
multiple vertices may move onto a single node at the same time, Algorithm 2 is used
to fold multiple vertices.

Multiple vertices may move onto the same sensor node. After receiving a vertex
movement message, a sensor node caches the vertex movement into a vertex move-
ment array, VM. An element in VM contains the vertex’s previous location, and the
vertex’s previous left and right neighboring vertices. Some vertices can be folded into
a single vertices (e.g., consecutive left and right neighboring vertices), as illustrated
by Algorithm 2. By comparing the LEFT and RIGHT relationships among vertices,
Algorithm 2 folds consecutive vertices into a single vertex and insert the vertex into
the vertex list, VL. If vertices are not consecutive (e.g., the vertices are from two 2D
objects), VL may contain multiple vertices. Till now, a vertex movement is finished.
The new vertex node then notifies the vertex’s current location to its previous left
and right vertex nodes. The current left and right vertex nodes may get the message
through the previous left and right vertex nodes. The updated location messages are
exchanged only among neighboring vertices through necessary relays. After receiv-
ing the updated location of its neighboring vertices, a vertex node knows the locations
about its current right and left vertices. After the vertex updates are done, a vertex

Algorithm 2 Folding consecutive vertices
Require: A sensor node receives multiple vertex movement messages and caches the messages into cached vertex move-

ment array VM.
Ensure: Folding vertices on the local sensor nodes and prepare the vertices list VL.
1: VL ⇐ VL.init()
2: repeat
3: mostLeft ⇐ VM.getFirst()
4: VM ⇐ VM.remove(mostLeft)
5: repeat
6: toRepeat ⇐ FALSE
7: for all m ∈ VM do
8: if mostLeft.preLeft = m.preLocation then
9: VM ⇐ VM.insert(mostLeft)
10: mostLeft ⇐ m

11: VM ⇐ VM.remove(m)

12: toRepeat = TRUE
13: end if
14: end for
15: until toRepeat = FALSE
16: mostRight ⇐ mostLeft
17: repeat
18: toRepeat ⇐ FALSE
19: for all m ∈ VM do
20: if mostRight.preRight = m.preLocation then
21: mostRight ⇐ m

22: VM ⇐ VM.remove(m)

23: toRepeat = TRUE
24: end if
25: end for
26: until toRepeat = FALSE
27: v ⇐ newVertex()
28: v.preRight ⇐ mostRight.preRight
29: v.currentRight ⇐ null
30: v.preLeft ⇐ mostLeft.preLeft
31: v.currentLeft ⇐ null
32: VL ⇐ VL.insert(v)

33: until VM.length = 0
34: return VL

Author's personal copy

18 Distrib Parallel Databases (2011) 29: 3–30

Algorithm 3 Adding a vertex
Require: Vertex nodes update their current location to the left and right neighbors.
Ensure: Adding a new vertex operation if the distance between a vertex and its right vertex is larger than Dsplit .

1: if |myLocation − rightVertex| > Dsplit then

2: v.x ⇐ myLocation.x+rightVertex.x
2

3: v.y ⇐ myLocation.y+rightVertex.y
2

4: newVertex ⇐ PositionService.FindNearestNode(v)

5: notifyNewVertexTo(rightVertex)
6: designateNewVertex(newVertex)
7: rightVertex ⇐ newVertex
8: end if

node checks the distance to its right vertex. If the distance is larger than Dsplit, a new
vertex is added in between, as illustrated by Algorithm 3.

The new vertex is the middle point of the local vertex and its right neighboring
vertex. Since sensor nodes are discretely distributed, the nearest sensor node to the
middle point is found through the background position service [5]. As shown by
Algorithm 3, if a new vertex is inserted, the nearby vertex links are updated, and the
new vertex node is notified.

After receiving the updates from neighboring vertices, a sensor node needs to
update the corresponding vertex entry in the vertex list, VL. An element in VL, there-
fore, contains the locations of the vertex’s current right and left neighboring vertices.
Based on the content of VL, a sensor node detects the overlapping edges locally.
After removing overlapping edges, the open curves need to be reconnected. Some
vertices may also be removed accordingly as illustrated by Algorithm 4. If no vertex
is remained (e.g., a vertex has its current right and left neighboring vertices overlap-
ping), the sensor node becomes a non-vertex node. The edge between the local sensor
node and brokenNeighbor indicates the removed overlapping edges. The location of
brokenNeighbor is useful to determine whether the topological change is splitting or
merging. After removing the overlapping edges and reconnecting the open curves,
the remained vertex moves based on the force models afterwards.

In the in-network deformable curve tracking, vertex nodes need to update the cur-
rent vertex locations to neighbors. Vertex nodes can detect the intersecting edges
based on the broadcasting vertex location updates. No additional communication is
required over the deformable curve tracking, if Dsplit ≤ √

2Rcomm. After the pair of
intersecting edges, IE, are detected, the four vertex nodes need to be notified. Some
vertices may need to be removed if the vertices are not located on the object bound-
ary, as illustrated by Algorithm 5. Intersecting edges need to be removed. We need to
re-close the open curves by reconnecting the vertices, as explained by Algorithm 5.
Similar to the brokenNeighbor in Algorithm 4, the location of intersecting edges in
Algorithm 5 also helps to determine the type of this topological change.

5.2 Discussion

We assume the initial curve V 0 is given. The initial curve V 0 can be found by distrib-
uted algorithms [11, 25, 34], or from the distributed detection result based on the dif-
ferent models [36]. For example, the emerging of a 2D object matching a user-defined
shape can provide the initial boundary V 0. Due to the constrained environment, the

Author's personal copy

Distrib Parallel Databases (2011) 29: 3–30 19

Algorithm 4 Removing overlapping edges and reconnecting open curves
Require: A sensor node folds multiple vertices and has the current neighboring vertices’ locations updated into the

vertices list VL.
Ensure: Removal of overlapping edges and corresponding vertices; reconnecting open curves; reporting the removed

edge.
1: for all v ∈ VL do
2: for all o ∈ VL do
3: if v.currentLeft = o.currentRight then
4: brokenNeighbor ⇐ v.currentLeft
5: v.currentLeft ⇐ null
6: o.currentRight ⇐ null
7: end if
8: end for
9: end for
10: for all v ∈ VL do
11: if v.currentLeft = null AND v.currentRight = null then
12: VL.remove(v)

13: end if
14: end for
15: for all v ∈ VL do
16: for all o ∈ VL do
17: if v.currentLeft = null AND o.currentRight = null then
18: v.currentLeft ⇐ o.currentLeft
19: VL.remove(o)

20: end if
21: end for
22: end for
23: return brokenNeighbor

Algorithm 5 Removing intersecting edges and reconnecting open curves
Require: The intersecting edges have been detected; an IE structure contains the four vertices of the intersecting edges;

consequently, four vertices have been notified about the intersection and run this algorithm.
Ensure: Removal of intersecting edges and corresponding vertices; reconnecting open curves; reporting the removed

edges and vertices.
1: if localBoundaryStatus = false then
2: resignVertex(mySelf)
3: return reportRemovedVertex(myLocation)

4: end if
5: for i = 0 to 1 do
6: if i = 0 then
7: j ⇐ 1
8: else
9: j ⇐ 0
10: end if
11: if myLocation = e[i].leftVertex then
12: rightVertex ⇐ e[j].rightVertex
13: return reportRemovedEdge(e[i])
14: else if myLocation = e[i].rightVertex then
15: leftVertex ⇐ e[j].leftVertex
16: return reportRemovedEdge(e[i])
17: end if
18: end for

V 0 shape given by a distributed object detection is usually coarse, such as a simple
rectangle [36]. Our tracking algorithm changes and optimizes the shape and location
of V 0 based on the revised SNAKE model to well attach to the 2D object. In related
approaches, the geometric boundary is collected and reported back to the base sta-
tion periodically. Our tracking algorithm, on the other hand, is able to just report the
incremental changes of object boundary. Particularly, a base station is able to track
the object by using the vertex changes (i.e., the movement, addition and removal of
vertex). The vertex change can also be extended to the spatiotemporal range change.

Author's personal copy

20 Distrib Parallel Databases (2011) 29: 3–30

In other words, a vertex change is reported back, only if the vertex has moved out
of a predefined range. Furthermore, the tracking of deformable curves can easily be
extended to support the in-network extrapolation of the curves’ future location and
shape. Due to the space limitation, we will leave on these extensions to our future
work.

The proposed tracking algorithm for deformable curves maintains the curves by
localized message exchange. When a vertex moves, the vertex node sends a desig-
nation message to one of its immediate neighbors, and resigns. The new vertex node
reports the updated vertex location to the previous left and right vertex nodes. The
previous left and right vertex nodes may need to relay the update messages to the
vertices’ current locations. Dsplit roughly bounds the geographical range for a vertex
update message to be transmitted. If the curve keeps a constant number of vertices,
the maintenance cost of the tracking algorithm is constant. If the curve expands and
requires more vertices, the maintenance cost increases linearly to the number of ver-
tices.

Dsplit also controls the number of vertices along a closed curve. If Dsplit is large,
fewer vertices are added when a curve deforms. Dsplit is useful to control the quality
of the deformable curve to represent the underlying 2D object. Similar techniques
have also been applied to simplify the curve shape [11]. Compared with reporting
points along the object boundary, the network requires less communication to send
linked vertices, if Dsplit is large. The difference is approximately scaled by Dsplit,
since only the two end vertices of a line with length = Dsplit represents the whole set
of points along the line.

The location of brokenNeighbor is useful to locally judge the type of the topo-
logical change, as explained by Algorithm 4. After removing overlapping edges, a
sensor node forms a new angle, which has the remaining left and right edges as the
new angle’s left and right edges. By comparing Fig. 10(b) and Fig. 10(a), we shall
see that if brokenNeighbor is within the new angle, then the topological change is
a merging event. If brokenNeighbor is outside the angle, a splitting event occurs. In
some cases, a 2D object may partially merge itself. For example, a band is bent into
a ring. Similarly, a ring can be broken into a band. To better solve this issue on how
to efficiently and locally determine the type of the topological change, we may need
to assign unique identifications to 2D objects [9]. For example, a sensor node can
combine the object ID of the removed edge with the topological test result based on
the location of brokenNeighbor to determine if a ring is newly formed. We do not
address this issue in detail, since it is beyond the scope of this paper.

As illustrated by Fig. 9, Algorithm 4 requires no additional communication cost
over the in-network deformable curve tracking. The detection of intersecting edges
may need additional communication cost. If Dsplit is small enough, vertex nodes are
able to detect intersecting edges through the broadcasting vertex location updates.
After intersecting edges are found, the four vertex nodes need to be notified. Algo-
rithm 5 removes the intersecting edges and reconnects the representative curves, as
shown by Fig. 11.

The proposed tracking algorithm does not require a particular network layout, such
as the grid layout. As illustrated by Algorithm 1, a vertex node can pick one neigh-
bor’s location as the vertex’s successive location. The local boundary detection result

Author's personal copy

Distrib Parallel Databases (2011) 29: 3–30 21

and the location of a neighbor, on the other hand, determine the “elastic energy”, if a
vertex moves to the neighboring node. A vertex node only chooses one neighbor as
the successive location.

A message may get lost during the wireless transmission. The acknowledgement
and retransmission are necessary. This issue, however, is beyond the scope of this pa-
per. We assume that the underlying geo-routing protocols assist the proposed tracking
algorithm to handle communication failures [17, 19]. The death of non-vertex nodes
only affects the number of neighboring location points where a vertex may move
to. The proposed tracking algorithm can still run smoothly, if non-vertex nodes die.
A more serious problem may occur, if a vertex node dies before it correctly resigns
and notifies the resignation to its neighboring vertex nodes. A live vertex node can pe-
riodically notify its neighboring vertex nodes about its current status that may include
its health and location. If a vertex node cannot hear the status message from its neigh-
boring vertex nodes, the node can generate a vertex node failure message and pass
the message along the deformable curve. The deformable curve, consequently, can
be terminated. A distributed boundary geometry formation algorithm may be called
again to regenerate the representative curve [11, 25, 34]. Our tracking algorithm can
be called again afterwards. The proposed tracking algorithm also requires a synchro-
nization service to synchronize nodes [8]. Due to the space limitation, however, we
cannot discuss these issues in detail.

Based on the algorithms described in this section, a WSN is able to track 2D ob-
jects separately and their interactions in network. A WSN can update the deformable
curves to users and let users to get the spatiotemporal properties from the geomet-
ric information. The deformable curve tracking algorithm provides more than just the
snapshot results about representative curves. Based on the deformable curves, a WSN
is able to directly extract abstract spatiotemporal properties of 2D objects without re-
turning users the detailed geometric information about the representative curves.

6 Aggregated abstract information

As explained by A. Galton, several abstract spatiotemporal properties are useful for
cognition, linguistics and reasoning [10]. In daily life, people can describe and ex-
change information about 2D objects by abstract spatial and spatiotemporal infor-
mation without any graphical aid. In Sect. 4, we have explained how to adapt the
representative curves to the topological changes involved by the interaction between
multiple objects. In [16], we have shown how to use the aggregation over deformable
curves to extract the several spatial and spatiotemporal properties about 2D objects.
By using these aggregation operations, an SDMS is able to answer many useful spa-
tial and spatiotemporal queries without reporting the detailed geometric representa-
tion about 2D objects. Therefore, communication resources can be saved.

For instance, the area of a 2D object can be aggregated based on (14).

At = 1

2

n∑
i=1

(
xt
i y

t
i+1 − xt

i+1y
t
i

)
. (14)

Author's personal copy

22 Distrib Parallel Databases (2011) 29: 3–30

In this aggregation, a vertex node prepares its local partial results based on its location
and its right neighboring vertex. The area about the region covered by a 2D object
curve can be computed through the in-network aggregation [26].

At+1 − At =
n∑

i=1

(
DA1t+1

i + DA2t+1
i

)
, (15)

where

DA1t+1
i = 1

2

∣∣vt+1
i − vt

i

∣∣ ∣∣vt
i+1 − vt

i

∣∣ sin∠vt+1
i vt

i v
t
i+1, (16a)

DA2t+1
i = 1

2

∣∣vt+1
i+1 − vt

i+1

∣∣∣∣vt+1
i+1 − vt+1

i

∣∣ sin∠vt
i+1v

t+1
i+1vt+1

i . (16b)

The in-network aggregation has been shown to be an efficient paradigm to process
sensor data in wireless networks. To further improve the processing efficiency, the
report suppression can be used [33]. We find that many real-time queries about ab-
stract properties can be answered by using the temporal changes in these properties.
For example, the area change as indicated by (15) can be used to answer area queries.
A local vertex node prepares the local area change based on the nearby vertices’ lo-
cations. The local area change values, DA1t+1

i and DA2t+1
i , are signed scalars, as

indicated by (16a) and (16b). By using (15), a vertex node is able to suppress local
partial aggregation reports. For example, if the local area change is zero, a vertex
node can suppress the local report to its parent node.

The in-network aggregation approach can easily be extended to other spatial
properties and the corresponding spatiotemporal property changes, such as Minimal
Bounding Rectangle (MBR), perimeter, centroid. In next section, the experimental
results will show the efficiency of our approach.

7 Experimental evaluation

We implemented our distributed deformable curve tracking algorithms in TinyOS
[22], and used CLDP [19] which is an enhanced TinyOS implementation of GPSR
as the routing protocol. We run our codes in TOSSIM [22], and set the simulated
environment as follows. The network was in a grid layout. In the network, 169 sen-
sor nodes were distributed evenly in a 100 × 100 2D space at the interval of 8. The
root node was located at (2,2), and connected to a base station. The wireless ra-
dio range was 10, which allowed a sensor node to directly communicate with up to
four neighbors within the range. The weights α and β were equal to 1. Sensor nodes
collected sensor readings based on four 100 × 100 video clips. Each sensor node col-
lected sensor readings from the corresponding pixel values in the video clips based on
the node’s location. The video clips simulated both simple and complex 2D objects,
including convex objects, concave objects and objects with hole. The communica-
tion cost is based on the number of packets including the packets used for multi-hop
routing. We ran each test multiple times and measured the average cost to compare
different approaches. Table 1 summarizes the parameter settings in our experiments.

Author's personal copy

Distrib Parallel Databases (2011) 29: 3–30 23

Table 1 Parameter settings
Parameter Value Parameter Value

Network Layout Grid Network size 169

Node Interval 8 Radio Range 10

α 1 β 1

Root location (2,2)

In the first set of tests, we focus on tracking single simple 2D object. To control the
curve tracking quality, Dsplit was set to 18. Two video clips containing two different
objects were used. The initial shapes of both objects were a solid circle with radius =
25. The initial curves were both an inscribed regular octagon of the circle. The object
1 started with center = (35,35), and moved x + 4, y + 4 in each frame while kept
the size constant. The object 2 started with center = (50,50), and enlarged radius +
4 in each frame while kept the center unchanged. A video frame was updated to
TOSSIM in every 700 seconds. Sensor nodes were woken up in every 350 seconds
to collect updated sensor readings, detect objects and boundaries, and deform the
tracking curves. A sensor node took a sensor reading as the corresponding pixel value
in the concurrent video frame based on the node’s location.

We implemented the first order and second order curvature models in our exper-
iments. The two curvature models preformed almost same in the tracking quality,
since we set Dsplit to a small value. The first order curvature model prefers the local
angle to be π , while the second order curvature model constrains local three con-
secutive angles to be similar. The first order curvature model requires the location
update of a vertex to be exchanged among three neighboring vertex nodes. The sec-
ond order model needs to exchange a vertex location update message among five
consecutive vertex nodes to update the three angles’ values. The second order model
also needs more communication resources to send the folding vertices and adding
vertex notifications. Figure 12 shows the average maintenance costs of the first and
second curvature models from our tests. The first order curvature model consumes as
around 36% maintenance communication cost as required by the second order curva-
ture model. Since the first order curvature model requires less maintenance cost and
shows no difference in the tracking quality, we did the following tests only based on
the first order curvature model.

We compared the communication cost of tracking deformable curves against the
cost of reporting boundary points. Figure 13 illustrates the average communication
costs from our tests. To track both objects, reporting the points around the object
boundary is the most expensive. Reporting linked vertices required less resource than
the point boundary reports did. Similar communication costs can be observed in re-
lated approaches which report geometric representation of object boundary [6]. As
we expected, the difference between the two types of communication costs was ap-
proximately scaled by Dsplit. The ratios of reporting linked vertices against boundary
points to track the two objects were both around 0.6. Combined the communication to
maintain the deformable curves, the total communication cost of tracking deformable
curves was still less than the cost of reporting boundary points. We also collected the
communication messages to just report the vertex changes (i.e., the movement, ad-
dition and removal of vertex). To report the incremental change of object boundary,

Author's personal copy

24 Distrib Parallel Databases (2011) 29: 3–30

Fig. 12 Maintenance cost

Fig. 13 Communication cost

over 70% communication can be saved. Even combined with the maintenance cost,
the total communication cost of reporting the incremental boundary change was less
than the cost of reporting the whole geometric boundary periodically. Tracking de-
formable curves supports extracting abstract spatiotemporal properties about objects.
We implemented the aggregation operations to extract the area and centroid of 2D
objects. As shown in Fig. 13, processing the aggregated information consumed much
less communication resources than reporting boundary points or linked vertices did,
while these aggregated abstract spatiotemporal properties are able to assist people to
understand the underlying phenomena without using any geometric representation.
We also implemented the area change and centroid change operations to test lossless
suppression and further improve the aggregation efficiency. In short, if the local par-

Author's personal copy

Distrib Parallel Databases (2011) 29: 3–30 25

Fig. 14 Communication rates

tial aggregated area change or centroid change is zero, a sensor node suppresses the
local partial result to be further transmitted to its parent node. As shown in Fig. 13,
the suppressed aggregation operations consumed as around 40% communication cost
as required by the unsuppressed aggregation operations. This result proves the effec-
tiveness of suppression, and shows the future direction to combine other suppression
technologies with our approaches [33].

Another interesting test is the comparison of communication rates over time. Fig-
ure 14 shows the results from two tests. The object 1 moved and kept the area con-
stant while the object 2 increased its area and kept the center still. As illustrated
by Fig. 14(a), to track the object 1, the maintenance cost rate remained constant.
The communication cost rate to maintain the deformable curve for the object 2 in-
creased since more vertices were added to track the enlarged region, as shown by
Fig. 14(a). Figure 14(b) explains that more communication resource was required
to report boundary points of both objects while time elapsed. The object 1 required
the same number of points to represent the boundary. While the object 1 moved fur-
ther away from the root node’s location, the boundary points required more hops
to be relayed back to the root node. The object 2 needed more points to represent
the boundary while the area was enlarged. More communication resources were in
need to report the increasing number of points along the boundary of object 2. Other
types of communication messages for linked vertices and the aggregated information
showed similar results as presented in Fig. 14(b).

In the second set of tests, we used additional video clips as the underlying phe-
nomenon to test the interactions among multiple objects. These video clips contained
multiple 2D objects. The shape of these objects are complex. Convex objects, con-
cave objects and objects with hole were all simulated. Each frame was a snapshot of
these objects. A video frame was updated to TOSSIM in every 600 seconds. Sensor
nodes were woken up in every 200 seconds to collect updated sensor readings, detect
objects and boundaries, deform the tracking curves, and adapt curves to the topologi-
cal changes. Dsplit was set to 15 for these tests. The experimental results have shown
that our tracking algorithm is able to successfully track these complex objects, and
adapt the curves to track multiple objects.

The first video contained a single 2D object located at the network center initially.
Afterwards, the 2D object split into two objects. The two 2D objects started moving
towards two opposite corners of the 100 × 100 space. Later on, the two 2D objects

Author's personal copy

26 Distrib Parallel Databases (2011) 29: 3–30

Fig. 15 Test results on splitting and merging

moved back to the center and merged into a single object. Figure 15 illustrates a se-
ries of snapshots of the tracking curves and underlying 2D objects. In Fig. 15, the
gray region indicates the region covered by underlying 2D objects. The small blue
circles represent the location of sensor nodes. The red circles indicate the sensor
nodes which detected the object boundary. The small squares represent the vertices
on deformable tracking curves. The black lines indicate the edges of the deformable
curves at the current time slot, while the gray lines are the edges of the deformable
curves at the previous time slot. The dotted gray lines represent the vertex movement.
Figures 15(a), 15(b) and 15(c) show the sequence of the splitting event. As shown in
Fig. 15(b), the sensor nodes can detect the overlapping edges locally. By removing
the overlapping edges and reconnecting the open curves, sensor nodes can locally
adapt the deformable curves into two closed curves as illustrated by Fig. 15(c). The
sequence of the merging event is explained by Figs. 15(d), 15(e) and 15(f). Similar
to Fig. 15(b), when the two 2D objects were merging together, some edges in the
two closed curves overlapped together as shown by Fig. 15(e). The removal of over-
lapping edges can allow sensor nodes to locally adapt the deformable curves into a
single closed curve, as explained by Fig. 15(f).

We used the second video to illustrate the development of a hole. The video used
for the second test began with a single 2D object located at a corner in the network.
Afterwards, the 2D object grew two arms both horizontally and vertically. The two
arms merged at the opposite corner, which resulted in a hole inside the 2D object.
Figures 16(a), 16(b) and 16(c) show the sequence of how the two arms merged. Sim-
ilar to Fig. 15(e), the edges of two arms overlapped partially as illustrated by 16(b).
By removing the overlapping edges and reconnecting open curves, sensor nodes can
adapt the deformable curves locally to represent the ring shape of the 2D object as

Author's personal copy

Distrib Parallel Databases (2011) 29: 3–30 27

Fig. 16 Test results on a hole development

shown by Fig. 16(c). After the establishment of the inner hole, the ring started break-
ing at one corner. The breaking sequence is illustrated by Figs. 16(d), 16(e) and 16(f).
Again, sensor nodes can locally detect the overlapping edges as shown by Fig. 16(e).
Through removing the overlapping edges, the deformable curve can adapt its shape
locally to the shape of underlying 2D object as illustrated by Fig. 16(f).

8 Related work

The database community treats a WSN as a distributed sensor database system which
observes the physical world in real time and answers queries about the world si-
multaneously. Studies in sensor databases started to support complex queries with
aggregation queries. TAG is a framework for aggregation query processing [26]. In
TAG, sensor nodes communicate with each other in a tree structure. A sensor node
prepares its local readings, and aggregates the local readings with the partial results
from its children into a new local partial result. A partial result is usually kept in a
constant sized message. The aggregated information is processed from the bottom
leaf nodes to the top root node. The root node is able to provide the final aggregation
results about the whole network.

A WSN can identify objects based on user defined thresholds [3, 6, 15, 20, 30].
To estimate the local object boundary, sensor readings are usually exchanged and
processed in a neighboring region based on a statistical model. The point object
boundary reports can be linked into curves in WSN. The boundary gradient infor-
mation can be used to link the points. Suppose the Voronoi diagram based on sensor
node location is available. By comparing the neighboring nodes’ local object and

Author's personal copy

28 Distrib Parallel Databases (2011) 29: 3–30

object boundary estimation results, a sensor node can find the direction of how the
object boundary goes across the local Voronoi cell [25]. In this way, a local boundary
point can be extended to a directed line. By connecting the partial boundary lines, a
WSN can find the closed curves to represent 2D objects. Similar work has also been
applied in the grid layout [34]. The skeleton structure can also be used to link the
boundary points. To find a skeleton to represent the object boundary, a WSN needs to
find the band region covered by the points along object boundary [37]. Based on the
boundary band region, the skeleton of the region can be found to represent the object
boundary.

In the field of computer vision, the deformable curve model, also known
as the SNAKE model, is generally used to identify objects and object bound-
aries [1, 4, 18, 35, 36]. For example, the deformable curves can identify reconstructed
roads from remote sensing images [1]. Recent studies in WSN have changed the fo-
cus onto how to identify complex objects, especially through the object’s spatial
properties. The original SNAKE model was also extended to support identifying and
tracking multiple 2D objects in image and video [21, 27]. Most models require a cen-
tralized analysis of vertices and edges on the deformable curves. For example, in [21],
vertices that are not located on the object boundary need to be removed. The remained
open curves are reconnected through a centralized analysis. Based on a simple rec-
tangle boundary representation, the emerging of an object can be identified through
the shape matching [36]. For example, the emerging of a gas leak can be identified
by the pyramid shape. Combining the tracking of deformable curves with identifying
2D objects gives us the motivation to extract complex spatiotemporal properties of
2D objects in the network. Except for the identification of a 2D object, we want to
know where, when and how the 2D object evolves in spatiotemporal spaces. In [16],
we have presented the initial work on applying the SNAKE model in WSN.

9 Conclusion and future work

We developed a distributed algorithm of tracking 2D objects in WSN. Based on the
revised SNAKE model, our tracking algorithm maintains the deformable curve by
exchanging messages around nearby sensor nodes. Furthermore, our tracking algo-
rithm can track multiple objects and complex objects. Our simulation results showed
that the maintenance cost of our tracking algorithm is relaxed and linearly scaled by
the number of vertices on the curve. Based on the in-network tracking of deformable
curves, many useful abstract information can be generated based on the in-network
aggregation. We also presented several aggregation variations to suppress local partial
aggregation results and further reduce the communication consumption. Our experi-
ments verified the effectiveness of combining these types of aggregation operations
with suppression techniques.

We will implement our tracking algorithm in real WSNs, and use more complex
phenomena to test it. Our future research also needs to provide a more robust imple-
mentation of the proposed tracking algorithm for the failure-prone WSNs.

Acknowledgements This research was funded under NSF grants NSF 0448183 and NSF 0428341.

Author's personal copy

Distrib Parallel Databases (2011) 29: 3–30 29

References

1. Agouris, P., Stefanidis, A., Gyftakis, S.: Differential snakes for change detection in road segments.
Photogramm. Eng. Remote Sens. 67, 1391–1399 (2001)

2. Antoine-Santoni, T., Santucci, J.F., de Gentili, E., Silvani, X., Morandini, F.: Performance of a pro-
tected wireless sensor network in a fire, analysis of fire spread and data transmission. Sensors 9(8),
5878–5893 (2009). doi:10.3390/s90805878. URL http://www.mdpi.com/1424-8220/9/8/5878

3. Chintalapudi, K., Govindan, R.: Localized edge detection in sensor fields. Ad Hoc Netw. 1(2–3),
273–291 (2003)

4. Cohen, L.D.: On active contour models and balloons. CVGIP: Image Understanding 53(2), 211–218
(1991). doi:10.1016/1049-9660(91)90028-N

5. Demirbas, M., Ferhatosmanoglu, H.: Peer-to-peer spatial queries in sensor networks. In: P2P ’03:
Proceedings of the 3rd International Conference on Peer-to-Peer Computing, p. 32. IEEE Computer
Society, Washington (2003)

6. Ding, M., Chen, D., Xing, K., Cheng, X.: Localized fault-tolerant event boundary detection in sensor
networks. Proc. IEEE 2(2), 902–913 (2005). INFOCOM 2005. 24th Annual Joint Conference of the
IEEE Computer and Communications Societies

7. Duckham, M., Nittel, S., Worboys, M.: Monitoring dynamic spatial fields using responsive
geosensor networks. In: ACM GIS ’05: Proceedings of the 13th Annual ACM International
Workshop on Geographic Information Systems, pp. 51–60. ACM Press, New York (2005).
doi:10.1145/1097064.1097073

8. Elson, J.E.: Time synchronization in wireless sensor networks. Ph.D. thesis, University of California
Los Angeles, Los Angeles, CA (2003)

9. Farah, C., Zhong, C., Worboys, M., Nittel, S.: Detecting topological change using wireless sensor
networks. In: Fifth International Conference on Geographic Information (GIScience 2008) (2008)

10. Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000)
11. Gandhi, S., Hershberger, J., Suri, S.: Approximate isocontours and spatial summaries for sensor net-

works. In: IPSN ’07: Proceedings of the 6th International Conference on Information Processing in
Sensor Networks, pp. 400–409. ACM Press, New York (2007). doi:10.1145/1236360.1236411

12. Harrington, B., Huang, Y.: In-network surface simplification for sensor fields. In: GIS ’05: Proceed-
ings of the 13th Annual ACM International Workshop on Geographic Information Systems, pp. 41–50.
ACM Press, New York (2005). doi:10.1145/1097064.1097072

13. Hellerstein, J.M., Hong, W., Madden, S., Stanek, K.: Beyond average: toward sophisticated sensing
with queries. In: Second International Workshop on Information Processing in Sensor Networks, IPSN
2003, pp. 63–79 (2003)

14. Jiang, J., Worboys, M.: Event-based topology for dynamic planar areal objects. Int. J. Geogr. Inf. Sci.
23(1), 33–60 (2009). doi:10.1080/13658810802577247

15. Jin, G., Nittel, S.: One adaptive event and event boundary detection algorithm for noisy wireless sensor
networks. In: Workshop on Mobile Location-Aware Sensor Networks, Nara, Japan (2006)

16. Jin, G., Nittel, S.: Tracking deformable 2d objects in wireless sensor networks. In: GIS ’08: Proceed-
ings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems, pp. 1–4. ACM Press, New York (2008). doi:10.1145/1463434.1463517

17. Karp, B., Kung, H.T.: Gpsr: greedy perimeter stateless routing for wireless networks. In: MobiCom
’00: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking,
pp. 243–254. ACM Press, New York (2000). doi:10.1145/345910.345953

18. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision V1(4),
321–331 (1988). doi:10.1007/BF00133570. URL http://dx.doi.org/10.1007%2FBF00133570

19. Kim, Y.J., Govindan, R., Karp, B., Shenker, S.: Geographic routing made practical. In: NSDI’05:
Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation,
pp. 217–230. USENIX Association, Berkeley (2005)

20. Krishnamachari, B., Iyengar, S.: Distributed Bayesian algorithms for fault-tolerant event region de-
tection in wireless sensor networks. IEEE Trans. Comput. 53(3), 241–250 (2004)

21. Lefèvre, S., Vincent, N.: Real time multiple object tracking based on active contours. In: Campilho,
A.C., Kamel, M.S. (eds.): International Conference on Image Analysis and Recognition, ICIAR 2004,
vol. 3212, pp. 606–613. Springer, Berlin (2004)

22. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation of entire tinyos ap-
plications. In: SenSys ’03: Proceedings of the 1st International Conference on Embedded Networked
Sensor Systems, pp. 126–137. ACM Press, New York (2003). doi:10.1145/958491.958506

Author's personal copy

http://dx.doi.org/10.3390/s90805878
http://www.mdpi.com/1424-8220/9/8/5878
http://dx.doi.org/10.1016/1049-9660(91)90028-N
http://dx.doi.org/10.1145/1097064.1097073
http://dx.doi.org/10.1145/1236360.1236411
http://dx.doi.org/10.1145/1097064.1097072
http://dx.doi.org/10.1080/13658810802577247
http://dx.doi.org/10.1145/1463434.1463517
http://dx.doi.org/10.1145/345910.345953
http://dx.doi.org/10.1007/BF00133570
http://dx.doi.org/10.1007%2FBF00133570
http://dx.doi.org/10.1145/958491.958506

30 Distrib Parallel Databases (2011) 29: 3–30

23. Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., Morris, R.: A scalable location service for geo-
graphic ad hoc routing. In: Proceedings of the 6th ACM International Conference on Mobile Com-
puting and Networking (MobiCom ’00), Boston, Massachusetts, pp. 120–130 (2000)

24. Lin, C.Y., Peng, W.C., Tseng, Y.C.: Efficient in-network moving object tracking in wireless sensor
networks. IEEE Trans. Mob. Comput. 5(8), 1044–1056 (2006). doi:10.1109/TMC.2006.115

25. Liu, Y., Li, M.: Iso-map: Energy-efficient contour mapping in wireless sensor networks. In: ICDCS
’07: Proceedings of the 27th International Conference on Distributed Computing Systems, p. 36. IEEE
Computer Society, Washington (2007). doi:10.1109/ICDCS.2007.115

26. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation service for ad-hoc
sensor networks. SIGOPS Oper. Syst. Rev. 36(SI), 131–146 (2002). doi:10.1145/844128.844142

27. McInerney, T., Terzopoulos, D.: T-snakes: topology adaptive snakes. Med. Image Anal. 4, 73–91
(2000)

28. Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: Landmarc: indoor location sensing using active rfid. In:
PERCOM ’03: Proceedings of the First IEEE International Conference on Pervasive Computing and
Communications, p. 407. IEEE Computer Society, Washington (2003)

29. Nittel, S.: A survey of geosensor networks: Advances in dynamic environmental monitoring. Sensors
9(7), 5664–5678 (2009). doi:10.3390/s90705493

30. Nowak, R., Mitra, U.: Boundary estimation in sensor networks: theory and methods. In: IPSN, pp.
80–95 (2003)

31. Perrin, D.P., Smith, C.E.: Rethinking classical internal forces for active contour models. In: IEEE
Conference on Computer Vision Pattern Recognition, vol. 2, p. 615. IEEE Computer Society, Los
Alamitos (2001). doi:10.1109/CVPR.2001.991020

32. Sharifzadeh, M., Shahabi, C.: Supporting spatial aggregation in sensor network databases. In: GIS ’04:
Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems,
pp. 166–175. ACM Press, New York (2004). doi:10.1145/1032222.1032248

33. Silberstein, A., Braynard, R., Yang, J.: Constraint chaining: on energy-efficient continuous monitoring
in sensor networks. In: SIGMOD Conference, pp. 157–168 (2006)

34. Solis, I., Obraczka, K.: Efficient continuous mapping in sensor networks using isolines. In: The Sec-
ond Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services
(MobiQuitous 2005), San Diego, CA, USA, pp. 325–332 (2005)

35. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–
369 (1998)

36. Xue, W., Luo, Q., Chen, L., Liu, Y.: Contour map matching for event detection in sensor networks.
In: SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international conference on Management
of data, pp. 145–156. ACM Press, New York (2006). doi:10.1145/1142473.1142491

37. Zhu, X., Sarkar, R., Gao, J., Mitchell, J.S.B.: Light-weight contour tracking in wireless sensor net-
works. In: The 27th Annual IEEE Conference on Computer Communications (INFOCOM’08) (2008)

Author's personal copy

http://dx.doi.org/10.1109/TMC.2006.115
http://dx.doi.org/10.1109/ICDCS.2007.115
http://dx.doi.org/10.1145/844128.844142
http://dx.doi.org/10.3390/s90705493
http://dx.doi.org/10.1109/CVPR.2001.991020
http://dx.doi.org/10.1145/1032222.1032248
http://dx.doi.org/10.1145/1142473.1142491

	Efficient tracking of 2D objects with spatiotemporal properties in wireless sensor networks
	Abstract
	Introduction
	Preliminary
	Sensor reading, 2D object and boundary
	SNAKE model

	In-network tracking of deformable curve
	Revised SNAKE model

	Tracking of multiple objects
	Breaking and reconnecting edges

	Algorithms
	Pseudo-codes and description
	Discussion

	Aggregated abstract information
	Experimental evaluation
	Related work
	Conclusion and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

