
Transactions in GIS. 2018;1–26. wileyonlinelibrary.com/journal/tgis  |  1© 2018 John Wiley & Sons Ltd

DOI: 10.1111/tgis.12458

R E S E A R C H A R T I C L E

Real- time inverse distance weighting interpolation
for streaming sensor data

Qinghan Liang1 | Silvia Nittel1 | John C. Whittier1 | Sytze de Bruin2

1School of Computer and Information
Science, University of Maine, Orono, Maine
2Laboratory of Geo-Information Science and
Remote Sensing, Wageningen University and
Research, Wageningen, Netherlands

Correspondence
Silvia Nittel, School of Computer and
Information Science, University of Maine,
Orono, Maine 04469.
Email: silvia.nittel@maine.edu

Funding information
National Science Foundation, Grant/Award
No: 1527504

Abstract
With advances in technology and an increasing variety of
inexpensive geosensors, environmental monitoring has
become increasingly sensor dense and real time. Using
sensor data streams enables real- time applications such as
environmental hazard detection, or earthquake, wildfire,
or radiation monitoring. In- depth analysis of such spatial
fields is often based on a continuous representation. With
very large numbers of concurrent observation streams,
novel algorithms are necessary that integrate streams into
rasters, or other continuous representations, continuously
in real time. In this article, we present an approach lever-
aging data stream engines (DSEs) to achieve scalable, high-
throughput inverse distance weighting (IDW). In detail, we
designed and implemented a novel stream query operator
framework that extends general- purpose DSEs. The pro-
posed framework includes a two- panel, spatio- temporal
grid- based index and several algorithms, namely the Shell
and k- Shell algorithms, to estimate individual grid cells ef-
ficiently and adaptively for different sampling scenarios.
For our performance experiments, we generated several
different spatio- temporal stream data sets based on the
radiation deposits in the Fukushima region after the nu-
clear accident of 2011 in Japan. Our results showed that
the k- Shell algorithm of the proposed framework produces
a raster based on 250k observation streams in under 0.5 s
using a state- of- the- art workstation.

www.wileyonlinelibrary.com/journal/tgis
mailto:silvia.nittel@maine.edu

2  |     LIANG et AL.

1  | INTRODUC TION

Environmental monitoring becomes increasingly sensor dense and real time, supported through advances in tech-
nology and a variety of inexpensive (geo)sensors. Geosensor networks are deployed in various environments,
such as urban observation (Mead et al., 2013; Murty et al., 2008; Resch, Mittlboeck, Girardin, Britter, & Ratti,
2009; Sanchez et al., 2011; Xiao et al., 2017), smart forests (Zhong, Kealy, Sharon, & Duckham, 2015), precision
agriculture (Agrible, Inc., 2016), earthquake monitoring (Faulkner et al., 2011; Hudnut, Bock, Galetzka, Webb, &
Young, 2002; Kong et al., 2015), or radiation monitoring (Safecast, 2016). The geosensors of a network, mobile
or stationary, sample concurrently and often at high temporal frequency; geosensor networks in smart cities,
emergency monitoring or precision agriculture, can reach up to millions of concurrently sampling sensors. The
observations are streamed continuously to the cloud and servers (Nittel, 2009; Sanchez et al., 2011; Zhou, Chen,
& Chen, 2017). With such sensing environments at hand, interest in real- time analysis of phenomena and events
has increased. Dense geosensor networks allow us to observe regional spatial fields such as urban air pollution,
flooding, or radioactive fallout at much higher resolution than ever before. However, these opportunities also
pose novel challenges to existing processing and analysis software, as well as to geostatistics.

Using spatial fields (Liang, Nittel, & Hahmann, 2016), their in- depth analysis is often based on a carefully cre-
ated continuous representation. Therefore, the observation streams need to be integrated automatically on- the-
fly and in real time into rasters, tessellations, or other continuous representations. This requirement poses several
significant challenges: first, the continuous process of data collection might change over time if sensors are mo-
bile, yet the creation of an accurate representation of the spatial field is desired; second, novel spatial interpolation
algorithms need to be able to process potentially very large numbers of samples efficiently and produce new ras-
ters under a few seconds for real- time GIS applications. While the density of geosensors and their sampling rate
depends on an application, for this article we set a target throughput rate for the real- time spatial interpolation
algorithms to a quarter of a million updates/second using a state- of- the- art workstation.

Rasters are a common representation of spatial fields. They are often created using kriging (Krige, 1951), since
kriging calculates both an unbiased estimate and the kriging variance. However, kriging is computationally expen-
sive, since it requires computing a variogram, fitting a model to the variogram, and the kriging process itself, which
has a computational complexity of O(n3) or O(n4) with n observations. Efforts have been made to adapt kriging
for data streams (Lorkowski & Brinkhoff, 2015a; Srinivasan, Duraiswami, & Murtugudde, 2010; Zhong, Kealy, &
Duckham, 2016), but still the computational complexity of the kriging step itself severely limits high throughput.
Thus, kriging is a less likely candidate for integrating up to 250k sensors in real time. On the other hand, inverse
distance weighting (IDW) (Lam, 1983; Mitas & Mitasova, 1999) has a computational complexity of O(n), and has
a higher potential to scale to very large observation sets. In recent years, work has been proposed to increase
throughput for IDW (Hennebohl, Appel, & Pebesma, 2011; Huang, Bu, Tao, & Tan, 2016; Mei, Xu, & Xu, 2016);
these approaches focused on designing algorithms that exploit GPU (graphics processing unit) architectures and
parallelize IDW. However, these approaches are not directly applicable to data stream processing. Stream process-
ing requires algorithms that both scale up to high throughput as well as automatically and adaptively keep up with
massive streams that continuously push updates with real- time query results.

A promising approach to real- time analytics over sensor data streams is to use data stream engine (DSE)
tools. Much like database management systems (DBMSs), DSEs are designed to do the heavy lifting of data
management while the user can focus on formulating queries over streams. DSEs have been developed for the
throughput needs of real- time data stream applications. Compared to DBMSs with a throughput of 500 updates/s
(Stonebraker, Çetintemel, & Zdonik, 2005), DSEs scale up to 1.5 million updates/s per CPU core (Carbone et al.,
2015). DSEs simplify the programming of analysis tasks over streams by providing a stream query language, and
also include a library of customizable functions. Today, many commercial and open source DSEs are available
(Whittier, Nittel, & Subasinghe, 2017). DSEs have been successfully applied in traffic and critical infrastructure

     |  3LIANG et AL.

monitoring (Ali, Chandramouli, Raman, & Katibah, 2010; Galic, Baranovič, Krízanovič, & Méskovič, 2014); they are
also promising candidates for monitoring continuous phenomena based on large numbers of sensor data streams
and real- time requirements for query results.

In this article, we propose a query stream operator framework for DSEs that performs scalable, real- time IDW
for large numbers of moving sensor streams. The framework consists of a set of stream- based query operator imple-
mentations that execute in parallel and in a pipelined way. The first component is a main- memory- based, two- panel
grid index that indexes each new sensor tuple spatially and supports efficiently locating samples via the shell list
template- based search. The next operator (i.e., the interpolator manager) consumes the indexed data and controls
a collection of parallelized cell interpolator operators that are built to minimize memory footprint and decrease ex-
ecution time. We implemented several cell interpolator algorithms—the single shell (Shell), k- adaptive shell (k- Shell),
and limited k- adaptive shell (ak- Shell) approaches—which deliver improved estimation results for different sampling
scenarios. We tested the framework’s performance using different data streams generated based on the radiation
deposit event in the Fukushima region following the nuclear accident of March, 2011 in Japan. The streams simulate
sensors moving with varying location patterns, such as dense (urban) and sparse (cross- country) road networks, as
well as several random sampling patterns. In the first part of the performance test, we evaluate the impact of algo-
rithm parameters such as search radius, IDW power parameter, and k on the root mean square error (RMSE). In the
second part, we test the run- time and throughput for the parameters with the lowest RMSE. The tests show that
the k- Shell approach provides the highest throughput and the best RMSE under all sampling scenarios. It achieves
the generation of rasters based on 250k moving sensors updating every second into a 500 × 500 grid in under 0.4 s.

The remainder of the article is structured as follows. Section 2 includes the background, discussing the prob-
lems of high- throughput and stream- based spatial interpolation. In Sections 3 and 4, we present our approach.
Section 5 discusses our experimental data sets, and Section 6 contains the performance tests and results. Section
7 summarizes the results and discusses future work.

2  | BACKGROUND

2.1 | Scalability of spatial interpolation methods

The computational complexity of a spatial interpolation method has a significant impact on its scalability (i.e., its
potential to write algorithms that still perform efficiently although the number of input points increases signifi-
cantly). For instance, typical implementations of kriging (Krige, 1951) have a computational complexity of O(n4) or
O(n3) if improved (Lorkowski & Brinkhoff, 2015b; Zhong et al., 2016). Although kriging delivers an unbiased esti-
mate and a type of error map (kriging variance), its computational complexity makes it an unlikely spatial interpola-
tion method for integrating up to 100k moving sensor streams in real time without using massive computational
resources. Srinivasan et al. (2010), Lorkowski and Brinkhoff (2015a), and Zhong et al. (2016) have adapted kriging
for data streams; this work has confirmed that kriging does not scale to large numbers of sensors, with kriging
taking 2 s to process 20 tuples using a 50 × 50 raster grid (Zhong et al., 2016) and 30 s to process 10 tuples using
a 150 × 150 raster grid (Lorkowski & Brinkhoff, 2015a, 2015b), respectively.

On the other hand, IDW (Lam, 1983; Mitas & Mitasova, 1999; Shepard, 1968) has a computational complexity
of O(n); its potential to scale to significantly larger observation sets efficiently is more promising. IDW is calculated
based on the following equation. To interpolate value u at a cell center x based on samples ui = u(xi) for i = 1, 2, …, n,
the following is calculated:

(1)u(x)=

⎧
⎪⎨⎪⎩

n∑
i=1

wi(x)ui

n∑
i=1

wi(x)

, if d(x,xi)≠0 for all i

ui, if d(x,xi)=0 for some i

4  |     LIANG et AL.

where wi(x)=
1

d(x,xi)
p

The parameter x denotes the interpolated point location, xi is a sample location, d is the given distance from
the known point xi to the unknown point x, and n is the total number of known points used in the interpolation; p
is a positive real number, called the power parameter.

2.2 | Scaling inverse distance weighting interpolation to high throughput

In recent years, increased interest has been placed on revising algorithms for IDW (Lam, 1983; Mitas & Mitasova,
1999) so that software can be developed that can cope with larger data sets in near real time. The main task of
increasing throughput for IDW is to parallelize time- consuming tasks such as finding the relevant, spatially neigh-
boring observation points for an estimated point. Then, the samples’ distances to the estimated point and, thus,
their weights for their input to the estimation need to be calculated. For instance, a raster consists of a million grid
points for a 1,000 × 1,000 cell grid, and estimating each cell fast is the key to increased throughput.

Current approaches can roughly be divided into two categories: first, work that is based on using GPUs or
grid technology to parallelize processing IDW (Guan, Kyriakidis, & Goodchild, 2011; Hennebohl et al., 2011;
Huang et al., 2016; Mei et al., 2016) and second, work that is data stream based (Nittel, Whittier, & Liang, 2012;
Whittier, Nittel, Liang, & Plummer, 2013). The first category exploits GPU architectures to speed up processing
large observation sets. These redesigned methods are used for stored data sets. In the domain of “big data,”
this type of processing falls under methods for dealing with the volume (of data). The second category of high-
throughput spatial interpolation consists of stream- based approaches, which fall under the category of methods
dealing with the velocity (of data). Stream- based implementations are different, in that they need algorithms
that continuously and adaptively keep up with the pushed updates from devices as they come in, can absorb all
data, and produce rasters in near real time. Often, stream- based implementation is designed to be integrated
in data stream engines to take advantage of their generic stream data management support and reduce overall
application development cost.

2.3 | Streaming inverse distance weighting

Informally, a sensor data stream is a continuously updating spatio- temporal relation with append- only tuples cre-
ated by a single geosensor or an entire geosensor network if all geosensors have a homogeneous schema (Nittel,
2015). Representing the updates of an individual sensor as a time series of data records has been common practice
in geographic and scientific applications. However, streams are different from stored time series in that streams
are continuously produced and processed immediately as they arrive, that is, stream processing is tied to the
stream delivery, is adaptive to it, and is expected to deliver results in real time.

In the database community, DSEs have been developed with a similar intention as DBMSs, that is to provide a
powerful data management tool that does much of the heavy lifting of query execution over streams in real time.
DSEs simplify application development by focusing on simply writing stream queries that plug in to the remainder
of the DSE processing engine. While queries in a DBMS are written over relations, queries in a DSE are written over
streams. Since a stream is unbounded and potentially infinite, queries are executed over well- defined portions of
streams, so- called stream windows. A window can be the data of the last 5 s or 5 min, or any user- defined time interval,
depending on the application requirements for windows. The data within a stream query window is a finite set of data,
and all processing has to finish before the end of a query window, that is, before the data of the next window arrives.
A query is automatically executed again and again for each new stream window (i.e., continuous query processing).

To use DSEs effectively, algorithms need to adhere to the stream query processing paradigm, that is,
each query operator must be implemented as a data- driven, purely main- memory operator. Such an operator
grabs tuples from an input queue that stores tuples in the order in which they arrive; an operator has only

     |  5LIANG et AL.

temporary access to each tuple for processing (one pass) and it must perform adaptively and efficiently to
meet the processing deadlines for each query window. On the other hand, a traditional algorithm typically
fetches the necessary data from the disk and often uses disk- based spatial indexes to perform tasks such as
interpolation. Such an algorithm also assumes that it has random access to all the data, as long as it is nec-
essary to perform a task. However, the assumption of disk I/O, disk- based spatial indexing, and the lack of
memory compactness becomes a severe bottleneck in such algorithms for very high throughput (e.g., 100k
data points/s).

The initial approach to implementing stream queries performing spatial functions such as nearest-
neighbor search for mobile objects was to implement a DSE query operator graph, feed the stream into
the data stream engine, but instead of implementing a complete set of operators implemented as fully as
stream- based operators, some operators were implemented as wrappers and internally called a tradition-
ally implemented spatial library as available in spatial DBMSs. Kazemitabar, Demiryurek, Ali, Akdogan, and
Shahabi (2010) and Miller et al. (2011) report that this approach significantly limits the throughput of DSE
queries. Venkatesan (2013) experimented with a similar approach, and implemented a stream- based spatial
interpolation query in Oracle Streams and called the Oracle Georaster application programming interface to
transform spatio- temporal point clouds per query window into a raster. The results showed that generating
a 512 × 512 raster using 60 sensors and a search radius of 10 cells takes around 6 min on a state- of- the- art
workstation, which cannot be considered real time and only works for applications with infrequent updates
and very long query windows (e.g., a query result every 30 min). Processing 100k updates took too long for
testing.

Thus, to achieve a throughput of streams up to 100k tuples/s and a query response time of about 1–2 s, spatial
functionality such as spatial interpolation needs to be algorithmically redesigned for stream- based processing, and
the following requirements hold:

• The algorithms use main memory only, since disk I/O is a bottleneck. On the other hand, main memory is a
limited resource in a DSE since all necessary incoming data and query operators share the available memory.
Therefore, the memory footprint of a spatial interpolation method needs to be kept small while retaining the in-
terpolation quality, even for large grids and large data sets. The algorithms need to be implemented as one-pass
algorithms (i.e., assuming only sequential access to data). Furthermore, they need to be scalable and adaptable
to the amount of incoming data.

• Sampling depends on varying underlying spatial constraints, such as movement of sensors on road networks,
data skew due to lack of sampling in water bodies (rivers, lakes, oceans), number of participating sensors at any
point in time, and other parameters. This can lead to sampling skew over both space and time. This poses new
requirements on how to support interpolation quality within automatic, repeated execution over continuously
new data.1

• The computational complexity of a spatial interpolation method has a significant impact on the scalable perfor-
mance for very large numbers of data points. Overall, stream queries consist of pipelined operators that work
autonomously, use input queues, and place their results into output queues. All operators work simultaneously
and should be non-blocking, that is, not assume that all data needs to be available before processing starts.
Bottlenecks in an algorithm need to be parallelized to increase throughput.

To the best of our knowledge, this work is the first of its kind adapting IDW to high- throughput, real- time spatial
interpolation of real- time sensor streams. As mentioned previously, Srinivasan et al. (2010), Lorkowski and Brinkhoff
(2015a), and Zhong et al. (2016) have adapted kriging for data streams processing using a stream- based operator
paradigm. However, due to the computational complexity of kriging, the approaches do not scale well to very high
throughput, and these approaches are limited to small data sets (20 tuples/s).

6  |     LIANG et AL.

3  | DSE FR AME WORK FOR RE AL- TIME SPATIAL INTERPOL ATION

Our objective was to design a scalable, high- throughput, stream- based framework that computes IDW on- the- fly
in real time using mobile sensor data streams. To set a concrete target line, we aimed at developing a framework
that is able to transform up to 250k samples/s continuously into rasters, with a raster produced every 1–2 s.

3.1 | Framework overview

Figure 1 shows an overview of the proposed framework. In the lower left part of the figure, geosensors in a geographic
area and a query over that region are depicted. The upper half of the figure depicts the proposed stream query frame-
work (described below); the lower right part shows a single output of the stream query (i.e., a continuous representation
of one query window). The stream query framework for continuous stream- based IDW consists of a collection of coop-
erating, non- blocking stream query operators. Each operator performs a sub- function of the stream- based transforma-
tion of sensor data streams into a stream of rasters. The framework consists of the following operators:

• Index operator: tuples arrive ordered by time in streams, but for spatial interpolation tuples that need to be
searched by location to find relevant tuples for a cell estimation fast. The index operator’s task is to spatially
index arriving updates (i.e., to insert them into a two-panel spatial index). It also needs to rapidly eliminate out-
dated tuples at the end of a window.

• Cell interpolator manager: the cell interpolator manager is aware of window semantics, cooperates with the
index operator to select the correct time panel of the spatial index, and manages a pool of cell interpolator
operators that perform grid cell interpolation in parallel.

• Cell interpolator operator: a cell interpolator operator estimates the value of a single grid cell of the output raster.
It locates all relevant tuples in the index, calculates their distances from the cell center, and computes the value.

• Raster assemble operator: the raster assemble operator keeps track of all arbitrary interpolated grid cells for a
single raster, since the interpolated cells can arrive in various orders from the interpolators, and produces the
output grid.

F IGURE 1 Stream query operator framework for IDW

     |  7LIANG et AL.

Overall, the sensor data streams flow into the query operator framework; the spatial grid index operator
incrementally indexes all the tuples of a query window. A part of the index is pushed to the next set of opera-
tors, the cell interpolators and their manager. Each cell interpolator places an estimated cell in the output queue,
which is used by the grid assemble operator. All data are stored in main memory to achieve fast access and high
throughput. Tuples that are no longer relevant to a query are usually stored to disk or discarded, depending on
the application.

3.2 | Spatial indexing operator

The index operator maintains a scalable spatial index that is flexible in scale and throughput in a stream- based
environment. This means that it needs to know the length of user- defined stream query windows (i.e., varying
window length) and is able to index a massive number of updates efficiently within one query window while mini-
mizing memory space. Once tuples are outdated, they need to be flushed efficiently from the index (for the index
to be filled again with the tuples of the next window). The index operator continuously inserts and deletes tuples
with massive rates into the index. Search performance is also a crucial performance parameter.

Today, several entity- based spatial index structures such as R- trees (Guttman, 1984) are considered state- of-
the- art spatial index structures due to their height balance; however, such a tree- based spatial index structure does
not perform well in this type of environment. An R- tree’s performance rapidly deteriorates with massive numbers of
incremental inserts and deletes, due to the constantly required reorganization of the tree. A space- based grid index
that is stored purely in main memory provides better performance for the necessary creation, deletion, and search
performance for massive inserts and deletes, since it never requires a reorganization of the grid structure itself.

Algorithm 1 Spatial Grid Indexing Algorithm

1: Initialize grid index panel PA;

2: Initialize grid index panel PB;

3: Insert tuples into first panel, Set currentIndexWindow ← PA;

4: while True do

5: At the end of current query window

6: if timer.endCurrentwindow() = True then

7: Tuples in the current window to buffer in queue for next operators:

8: bufferQueue.insert(currentIndexWindow);

9: Open the second grid panel and reset the query window:

10: currentIndexWindow ← SwapGridIndexPanelsAB();

11: currentIndexWindow.resetTimer();

12: Fetch next tuple from stream: t ← inputQueue.dequeue();

13: Insert tuple to grid index panel:

14: if t.isInCurrentwindow() = True then

15: Locate grid cell index: gridCellij ← t.locateCell();

16: currentIndexWindow.gridCellij.dataList.insert(t);

In our architecture, the grid index has the following algorithms:

• Initialization: the grid index operator dynamically creates a spatial grid in the size of the output raster, for
instance 1,000 × 1,000 cells (see Algorithm 1). The grid index has two identical panels, PA and PB, that is, two
data structures with empty grid cells of the same size that are used concurrently, but for different tasks (see
Figures 2 and 3). The index operator initializes the grid index with the user-defined windows size (e.g., 10 s).

8  |     LIANG et AL.

• Insertion: the index operator processes the incoming stream by opening a query window, and inserts the tuples
in their arrival order into the first panel PA of the grid index. Each grid cell covers a geographic region, and each
observation pertains to its original location. To keep the index compact, only pointers to the original tuples are
managed in the index. Also, since up to 250k tuples need to be inserted in the overall grid index, tuples within
an individual grid cell are not sorted by distance to the grid cell center or sorted in any other way; they are just
added to the grid cell tuple list.

The spatial index operator inserts all tuples for window wi into panel PA. At the end of query window wi (e.g., wi =
[0 s, 10 s]), all tuples that arrived during the window have been inserted and grid panel PA is pushed to the following op-
erators for consumption (see Figure 2). Meanwhile, the spatial index operator opens the second grid panel, PB. During
window wi+1 (wi+1 = [10 s, 20 s]), the index operator incrementally inserts all tuples of this window into the index as
they arrive (see Figure 3). Once this window is closed, the index operator pushes panel PB to the following operators,
and it flushes the first spatial grid panel PA with the data of wi and initializes it for the window wi+2 (we assume a tum-
bling window only in this article).

F IGURE 2 Spatial index operator for window wi

F IGURE 3 Spatial index operator for window wi+1: (a) search radius; and (b) cells by expanding radius distance
increments

     |  9LIANG et AL.

• Deletion: the spatial grid index contains two panels, one for the current window and one for the previous win-
dow. This design was chosen since having only a single panel would block all the following operators and they
would have to wait until indexing was completed before they could resume interpolation. With the two-panel
design, the spatial index operator and the grid cell interpolator operators can work in parallel (non-blocking).
The spatial grid operator recycles the panels continuously and flushes a panel before reusing it for a new
window.

3.3 | Spatial search using the shell list template

Each spatial interpolation operator estimates a cell eci (estimated cell) at a time. To do so, the interpolation opera-
tor accesses the corresponding index cell ici (index cell) in the spatial grid index. A search radius r is defined in order
to identify the necessary samples for estimation around each ici. For instance, Figure 4 shows different search
radii for cell ic(22,31) (center). The cells within search radius r = 1 are determined by the center of cell ic(22,31) and
include all cells whose cell center distance to the center of ic(22,31) is equal to 1. In this case, only the cell centers
of the four cells to the north, south, east, and west (red circle) are equal to r = 1, but the samples of, for example,
ic(23,32) are not included.

The spatial grid index makes sample points efficiently searchable by distance from a cell center of any ici. The
search starts with the cell ici and expands iteratively outward. A cell interpolator needs to visit all the relevant
grid index cells within a given search radius. To speed up the identification of those cells, we introduce the shell
list template (SLT). The SLT is a data structure that is created once per long- running stream query and shared
between all cell interpolator instances. It is a look- up structure that allows each cell interpolator to calculate the
grid index cells it needs to visit to interpolate an estimated cell. The SLT is based on (x, y) offsets and is compacted
to use minimal main- memory storage, that is, it contains a quarter of the look- up cells and the remaining cells are
calculated by mirroring. The memory size of a SLT for r = 32 is around 4 KB.

The SLT consists of a list of shells and the shells are ordered by ascending radius (see Figure 5a). Since the
SLT is a template, it is not tied to any particular cell; therefore, it starts with a so- called center cell. A shell shd(cc)
is a collection of offset pairs, all of which have the same distance d to the center cell (the cell to be estimated); it
identifies the cells j whose cell centers are all equal to the spatial distance d from the central cell. For instance, in
Figure 5b, two shells are shown, sh1(cc) and sh1.4(cc), around the central cell. The construction of a SLT starts with
the central cell; a shell with d = 0 has offsets (0, 0) to the center cell’s (x, y) coordinates. The sh1(cc) contains the
cells with offsets (1, 0) and (0, 1) from cc (as well as (0, −1) and (−1, 0), however they can be calculated by mirroring,
and thus are not stored in the SLT). The basic idea of the SLT is that the relevant index cells for estimation of a

F IGURE 4 Search radius for grid index cells: (a) nested list structure of shell list template; and (b) center cell,
shell sh1(cc) (red), and shell sh1.4(cc)

(a) (b)

10  |     LIANG et AL.

certain distance can be calculated with this additive offset template. Revisiting the example in Figure 4, the shell
sh0(22, 31) is used to retrieve the samples of cell (22, 31) itself; the shell sh1(22, 31) retrieves the samples of cells
(23, 31), (22, 32), (21, 31), (22, 30), and so on.

Algorithm 2 Shell List Template Algorithm

1: shellElemList ← LinkedList < ShellElem > ()

2: searchRadius ← desired maximum radius

3: radiusSquared ← searchRadius * searchRadius

4: for x = 0 to searchRadius do ⊳ Create flat list of all ShellElem

5: for y = 0 to searchRadius do

6: if x * x + y * y < = radiusSquared then

7: shellElemList.add(ShellElem(x, y));

8: sortedShellElems ← shellElemList.sort(); ⊳ Sort shellElemList in ascending distance

9: highDistance ← - 1;

10: shellList ← LinkedList < LinkedList < ShellElem > > (); ⊳ Initialize list of Shells

11: currentShell ← NULL; ⊳ Declare currentShell variable

12: for all shellElem ∊ sortedShellElems do ⊳ Group all equidistant shellElem

13: x ← shellElem.x;

14: y ← shellElem.y;

15: squaredDistance ← x * x + y * y;

16: if squaredDistance = highDistance then ⊳ If the Shell for this distance exists

17: currentShell.add(shellElem); ⊳ Continue to fill the current Shell

18: else

19: currentShell ← LinkedList < ShellElem > (); ⊳ Create a new shell

20: currentShell.add(shellElem); ⊳ Begin populating the created Shell

21: shellList.add(currentShell); ⊳ Add Shell to shellList

22: highDistance ← squaredDistance; ⊳ Update distance of Shell being populated

In Algorithm 2, a list of shell elements (shellElemList) is created; this is a “flat” list of shell elements, and each
shell element is an offset pair. The user- defined search radius is given, and the offset pairs of all cells that fall
within the search radius are added to the “flat” shell element list. Next, this shell element list is sorted by ascending
distance from the center cell. Now, the shell list itself is created; it is a two- level list of lists describing concentric
shells of successive distances from a central cell cc (see Figure 5a). The variable current shell is declared, and the
sorted list of shell elements is processed element by element. Logically, the first shell element is (0, 0); its squared
distance is 0 and thus, 0 > highDistance. The current shell is created as a list of shell elements (line 19). The current
shell element is added to the new shell (line 20), and the shell itself is added to the shell list (line 21). The high dis-
tance is updated. Next, the shell element (1, 0) is processed. The squared distance is 1, and thus greater than the
current high distance. A new shell is created, (1, 0) is added, the new shell is added to the shell list, and the algo-
rithm proceeds with the shell element (0, 1). Here, the squared distance is equal to the high distance, and the shell
element is added to the current shell. The algorithm proceeds until all shell elements are sorted into equidistant
shells that are ordered by r. Since the SLT is symmetric, only coordinates with positive x and y are stored in each
shell; the full shell can be constructed through mirroring.

     |  11LIANG et AL.

As mentioned, the SLT serves as a look- up structure; it is never copied and all samples only exist once in the
grid index itself. All cell interpolators work in parallel and share the data. Thus, the memory consumption only
depends on the number of arrival tuples and is constant otherwise.

4  | STRE AM- BA SED INTERPOL ATION OF GRID CELL S

In this section, we present the stream- based interpolation operator, which estimates the value of a cell using
IDW. Since sampling patterns can vary greatly in moving- sensor scenarios, the objective is to come up with both
a uniform and high interpolation quality across the raster, independent of the sampling patterns. Additionally,
main- memory constraints and execution time are considered. We introduce three alternative algorithms: the Shell
algorithm, the k- Shell algorithm, and the ak- Shell algorithm.

4.1 | Shell- based IDW interpolation algorithm

Interpolating the estimated value ueci of a grid cell (center) eci consists of three computational steps: (1) finding
collocated samples; (2) calculating the distance d(eci, xj) between the cell center eci and each sample xj; and (3)
computing the IDW formula.

In the Shell approach, the Shell cell interpolator is set with a user- defined search radius r. To locate the samples
within the search radius around the cell c, the Shell approach uses the SLT. First, the cell interpolation operator
that implements IDW incrementally processes all tuples in an index cell at a time. The operator calculates the
distance of each tuple from the cell center of eci, computes the weight for the tuple, and adds it to a running in-
termediate value of the interpolation function.2 It proceeds with the following tuple in the current index cell (or if
all tuples in the cell are processed, it uses the SLT to determine the next cell). The cell interpolation operator ter-
minates when all tuples contained in index cells determined by the search radius are processed and the estimated
value is calculated (see Algorithm 3 for the complete algorithm).

This algorithm uses variable numbers of samples for each interpolated cell, since the distribution of samples
in cells depends on the sampling pattern of the moving sensors at ti, and this distribution changes from time
stamp to time stamp. With dense sampling patterns, many tuples are considered during interpolation if a fixed
search radius is used; this required an increasing amount of processing time while the estimation quality might
not increase.

F IGURE 5 Shell list template

List of off-set pairs for a center cell to be
interpolated:

Shell0 = {(0,0)}
Shell1= {(1,0), (0,1)}
Shell1.4 = {(1,1)}
Shell2 = {(2,0), (0,2)}

Shell List = {Shell0, Shell1, Shell1.4, Shell2,.....}
x

y

0 2

0

1

1

2

center cell

(a) (b)

12  |     LIANG et AL.

4.2 | k- Shell interpolation algorithm

As mentioned, the Shell algorithm leads to variable numbers of observations per cell since it uses a fixed search radius,
and regions with sparse sampling will potentially result in lower estimation quality. To alleviate the drawbacks, we
designed an alternative algorithm, the k- Shell approach. In k- Shell, a parameter k is chosen to determine a minimum
number of observations that need to be identified until the search terminates. Here, the number of samples is less
dependent on sampling around an estimated cell, and a more uniform estimation quality for the entire raster can be
achieved.

In previous work (Nittel et al., 2012), we introduced an algorithm to find the k- nearest- neighbor (kNN) tuples
for each cell. Here, the interpolation operator scans the tuples within and around the cell ci, and incrementally
creates a sorted list of kNN tuples. In detail, it scans all available tuples in an index cell, which are maintained in an
unordered list. While processing the tuple list, it creates a sorted list in which tuples are ordered by distance from
the cell center. Then, it determines which tuples are considered as k- nearest ones. While this method was exact
when using the correct kNN sample, creating sorted lists requires significant computational cost. Furthermore,
creating lists leads to increased memory consumption in the first place.

In this article, we propose a simplified, faster algorithm. Still, the search for samples is capped by the param-
eter k. The k- Shell interpolation operator starts with the shell sh0(ci) and processes the tuples within the cell ci (in
the grid index). All tuples are processed, independently of how many tuples are actually present. If, after process-
ing sh0(ci), the parameter k is satisfied, the search terminates. Otherwise, the k- Shell interpolation operator ex-
pands the search to the next larger shell, sh1(ci), using the SLT (see Section 3.3). Again, all tuples that can be found
in the cells determined by sh1(ci) are processed within the interpolation, and if k is satisfied, the search termi-
nates, and so on. Not sorting tuples by distance, as well as not copying any data, eliminates processing steps and
memory consumption, leading to significant improvement in run- time as well as stable memory consumption.

For regions that are sparsely sampled, such as observations collected on rural road networks, k- Shell can lead
to a vast expansion of the search radius until k samples are found. The spatial distance of those found samples
from cell eci might be so significant that the interpolation quality is decreased if they are considered. Therefore, we
propose a third algorithm, the ak- Shell approach. This algorithm is identical to k- Shell, besides using a rmax param-
eter. In ak- Shell, the operator terminates if it has found k samples or if it has reached rmax, whichever comes first.

Algorithm 3 k-Shell IDW Algorithm

1: for all idwThread ∊ interpolationThreads do

2: gridCellij ← bufferQueue.take();

3: for all shell ∊ gridCellij.STL.list do

4: for all shellListElem ∊ shell.list do

5: for all ti ∊ shellListElem.datalist do

6: numerator + = gWeight(ti.getDistance(), power) * ti.value;

7: denominator + = gWeight(ti.getDistance(), power);

8: totalTupleCount + + ;

9: if totalTupleCount > = k then

10: gridCellij.value ← numerator/denominator;

11: outputQueue.insert(〈i, j, gridCellij.value〉);

In summary, k- Shell has the advantage of dealing with data skew adaptively by using a minimum bound of sam-
ples to be considered and potentially a maximum search radius. Especially for densely sampled regions, the algo-
rithm is adaptive to data skew in sub- regions. Furthermore, the processing time of k- Shell is significantly improved.

     |  13LIANG et AL.

5  | E XPERIMENTAL SETUP

5.1 | Implementation and run- time environment

The stream- based algorithms were implemented in Java in a simulated DSE environment (i.e., operators are con-
nected via queues, and work in a pipelined fashion), but we do not consider any other DSE components. The
experiments were run on an HP Z440 workstation with a 3.5 GHz, six- core Intel Xeon E5- 1650v3 processor and
32 GB of DDR3 1866 memory; the system run Ubuntu 14.04 and Java 1.8.0_131. The Java heap size was set at 3
GB, which was used to buffer the input stream and all processing.

5.2 | Data streams

Since sufficient numbers of live data streams for this type of research are not available today, we simulated
streams by creating moving agents that simultaneously sense a common phenomenon over a geographic region
with Netlogo (Wilensky, 1999). We created different population sizes of moving agents, since each agent is the
originator of a sensor stream. The population sizes that we use for testing are the following: 214, 215, …, 219. The
sensor agents of each population move in different spatial patterns, as discussed in the next section.

In this article, we have used the 5 days after the Fukushima Dai- ichi nuclear accident as input for the simulation
of moving sensor data streams. Calendar time corresponds to different “ticks” (t) in the agent simulation. For the
experimental results in Section 6, we primarily used “tick” stamp t = 24, which corresponds to March 14, 2011
00:00 UTC, 9:00 JST (day 3 after the nuclear accident) and “tick” stamp t = 40 (March 16, 2011 00:00 UTC, 9:00
JST), since the phenomenon changes significantly during these days. Figure 6 shows the radiation deposits at t = 40.

5.2.1 | Movement patterns

The sensor agents move randomly and generate environmental sensor measurements along their paths. All agents
sampled the phenomenon concurrently, and observations were logged. Initially, the agents were uniformly dis-
tributed over the entire area, but their movement was based on three different spatial movement constraint

F IGURE 6 Radiation plume and simulated sensors over: (a) Cambridge, MA; and (b) Fukushima, Japan on
March 16, 2011 00:00 UTC, 9:00 JST (t = 40)

14  |     LIANG et AL.

models: (a) movement in a dense urban road network (the Cambridge road network data set [Cambridge data set]);
(b) movement in a rural, sparse road network (the Japan road network data set [Japan data set]); and (c) spatially
unconstrained random walk movements (the unconstrained randomly sampled data set [randomly sampled data
set]) (see Figure 6).

5.2.2 | Radiation data set

We considered a realistic spatio- temporal phenomenon to be sampled by the moving agents. In detail, we used an
approximation of the radiation deposits in the 5 days after the Fukushima Dai- ichi nuclear accident on March 11,
2011. The predicted radiation levels were calculated in R using data from ZAMG (Wotawa & Skomorowski, 2012)
and SPEEDI (Chino, Ishikawa, & Yamazawa, 1993), and a sequence of snapshots of the event between the fourth
and fifth day after the disaster in 15 min sampling increments was generated. For each snapshot a 2,000 × 2,000
cell raster for a 2° × 2° study area surrounding Fukushima was used.

The data set was created in the following way: soon after the start of the Fukushima Dai- ichi nuclear
accident, the Meteorological and Geophysical Service of Austria (ZAMG) started computing and pub-
lishing data on the behavior of the radioactive cloud released by the accident (Wotawa & Skomorowski,
2012). Calculations relied on the model FLEXPART (Stohl, Forster, Frank, Seibert, & Wotawa, 2005).
For this study, ZAMG kindly provided accumulated cesium- 137 deposition data for the period March
11, 21:00 UTC till April 3, 21:00 UTC in 3 h intervals. These data are strongly predictive with respect
to measured radiation levels, although locally varying weather conditions as well as radionuclides and
other variables not accounted for by the model will cause departures from locally expected radiation
levels.

Similar to Heuvelink, Jiang, De Bruin, and Twenhofel (2010), we represented true measured radiation levels as
the sum of a deterministic trend based on the ZAMG data and a stochastic residual:

where log (·) denotes a natural log transform, Z(x) denotes the radiation measured at a location x, CsZAMG is the
modeled accumulated cesium- 137 deposition, f is a (deterministic) regression function, and ε(x) is the difference
between the true and the deterministic radiation levels. Since the latter residual is unknown at non- measured lo-
cations, it was modeled as a second- order stationary and isotropic Gaussian random function (GRF), see Heuvelink
et al. (2010). The regression coefficients as well as the parameters of the GRF were obtained by analyzing the
CsZAMG data in combination with measurements acquired by the System for Prediction of Environment Emergency
Dose Information (SPEEDI), which are available via http://www.sendung.de/japan-radiation-open-data/, as well
as data acquired by the global sensor network Safecast (http://blog.safecast.org/). All analyses were performed
in R (The R Project for Statistical Computing, 2017) using the contributed packages gstat (Pebesma, 2004), sp
(Pebesma, 2004), and akima, along with custom scripts.

6  | PERFORMANCE E VALUATION

We followed a two- step process for the performance tests: first, we tested different parameters (power param-
eter p for IDW, search radius r, k for k- Shell) and selected the configuration that produced the best estimation
quality for the different algorithms, sampling characteristics strategies, and phenomena; second, we assessed the
run- time and throughput performance for the selected parameters from step 1 and tested different sensor stream
population sizes (population sizes).

(2)
log (Z(x))= f[log (CsZAMG(x))]+�(x)

http://www.sendung.de/japan-radiation-open-data/
http://blog.safecast.org/

     |  15LIANG et AL.

6.1 | Investigating RMSE impact of chosen parameters

Each configuration that we tested generated predicted output rasters during interpolation. To assess the interpo-
lation error of each configuration, we compared each cell in the estimated raster, e, with the corresponding cell in
the ground truth raster, o, that was sampled by the simulated mobile sensor agents. Since the agents are sampling
a phenomenon that changes over time, e must be compared with o from time stamp t. The RMSE was computed
as follows:

The RMSE was normalized by dividing the RMSE by the mean of ot to allow the RMSE for snapshots from
different times to be compared with each other:

Two of the data sets contain water bodies (the Sea of Japan and the Pacific Ocean for the Japan data set; the
Charles River for the Cambridge data set); our simulation did not sample over water bodies and any estimated cells
over water bodies depend on the sampling over land. We used two different methods to assess RMSE: in Method
1, we compared only cells for which a value was actually calculated and empty cells were ignored in the RMSE
calculation; in Method 2, the empty cells from Method 1 were replaced with the mean value of all predicated cells,
and RMSE was computed over all cells. We normalized RMSE for the different data sets by dividing the RMSE by
the mean of the ground truth images at the same time stamp. We used both methods; Method 1 is used for the
random sampling data set, and Method 2 for the Japan and Cambridge data sets.

We determined the kriging baselines as best case RMSE for the different data sets. We determined it by using
the largest population (256k), the same time stamps as in the tests (t = 24 and t = 40), and a local kriging configu-
ration with 32 neighbors. The kriging baselines are the following: (1) for the randomly sampled data set the RMSE
is 0.1 for t = 24 and 0.08 for t = 40; (2) for the Cambridge data set the RMSE is 0.27 for t = 24 and 0.18 for t = 40;
and (3) for the Japan data set the RMSE is 0.15 for t = 24 and 0.24 for t = 40.

6.2 | Identifying the power parameter p for IDW

IDW assumes that the variable being assessed decreases in influence with distance from its sampled location. A higher
power gives more emphasis to nearer points, and significantly lower weight to more distant samples. The type of sam-
pling we test is different from traditional IDW scenarios, that is, using sensor data streams in high spatial density, IDW
encounters a much higher number of observations in close proximity; a high power parameter p is expected to perform
better, since many samples are already likely in spatial proximity and should receive higher emphasis during calculations.

In this test, we assessed the influence of the power parameter p for both the Shell and k- Shell algorithms for the
Cambridge data set. Four different population sizes, n = 32k, 64k, 128k, 256k, were selected. For this test, the radius
was set to r = 32 and we chose the radiation phenomena at t = 24 (March 14, 2011 00:00 UTC, 9:00 JST) and t = 40
(March 16, 2011 00:00 UTC, 9:00 JST). For each population size, we varied the power value between 1 and 4. Figure 7
shows that for the Shell approach, the power p = 4 has the lowest RMSE. For the k- Shell approach (k = 4), the power
had limited impact; this is due to the fact that likely k samples are found in close proximity and the search terminates.

6.3 | Impact of selected algorithm parameters

Next, we investigated the influence of several parameters on the interpolation quality of the algorithms described
in Section 4.

RMSE=

�
n∑
i=1

(ei−ot,i)
2

n

(4)NRMSE=
RMSE

ot

(3)

16  |     LIANG et AL.

6.3.1 | Impact of the neighborhood radius

We explored the impact of the search radius r around a cell. Each algorithm starts by locating samples in an in-
crementally increasing search radius around the candidate cell. How far should we extend the radius to cap the
number of samples when considering the estimation of a cell? We tested the following radii: 0, 1, 2, 4, 8, 16, 32,
48, 64, 80. Further, we tested the population sizes n = 32K, 64K, 128K, 256K and the grid size is 1,000 × 1,000.

The results for the Shell approach (t = 24) are depicted in Figure 8. As expected, the RMSE decreases with
increasing search radius. For the randomly sampled data set, r = 4 is the radius size that can be considered as de-
livering an acceptable RMSE (and larger radii, naturally). For the Cambridge data set, radius sizes starting with r =
32 start producing results with the lowest RMSE. In the Japan data set, acceptable results are also achieved with
r = 32, since the RMSE does not decrease significantly after increasing the radius further. Results are similar for t
= 40, but here a starting radius of r = 16 was set for the Cambridge data set, since this is a data set that is sampled
spatially denser and therefore a smaller radius is sufficient.

In the next test, we compared the impact of the power parameter p versus the radius r for sensor population
size n = 128K. In Figure 9, we can see that starting with r = 4 and p = 4, the lowest RMSE is achieved for the
randomly sampled data set. On the other hand, using p = 1 leads to increasingly distorted results with increasing
radius. The other tests confirm the assessment of r from above.

6.3.2 | Impact of k for the k- Shell approach

In the k- Shell approach, we investigated the impact of the parameter k (Figure 10). k was varied as follows:
k = 1, 2, 4, 6, 8, 16, 32, r = 64, and the grid size is 1,000 × 1,000. It is expected that the RMSE decreases with larger
k, which is the case in all tests. For the randomly sampled data set, k = 4 delivers a stable RMSE, and increasing k
further does not decrease the RMSE significantly. For the Cambridge data set and the Japan data set, the parameter
k = 8 using k- nearest- neighboring samples delivers a RMSE that is not significantly improved by using a higher k.

The motivation for k- Shell is that the memory footprint stays uniform for interpolation and thus is robust
against skewed sampling patterns. In a second test, we compared power p versus k for k- Shell (Figure 11). This
test confirms the results for k from above and using p = 4. We chose k = 4, 8, 16 as the basis for run- time tests.

F IGURE 7  Impact of power parameter p on RMSE

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

IDW power; cambridge 24; 32K, 64K, 128K sensors; 1000 x 1000

IDW Power

R
M

SE
/tr

ut
h

m
ea

n

Shell, 32K, r = 64
Shell, 64K
Shell, 128K
k−Shell, 32K, k = 4
k−Shell, 64K
k−Shell, 128K

1 2 3 4

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

IDW power; cambridge 40; 32K, 64K, 128K sensors; 1000 x 1000

IDW Power
R

M
SE

/tr
ut

h
m

ea
n

Shell, 32K, r = 64
Shell, 64K
Shell, 128K
k−Shell, 32K, k = 4
k−Shell, 64K
k−Shell, 128K

1 2 3 4

     |  17LIANG et AL.

6.3.3 | Impact of rmax and k for the ak- Shell algorithm

The ak- Shell algorithm is designed to perform well in sparse or non- urban road network sampling scenarios and
it limits the search radius to a fixed rmax so that less computational time is spent in sparse areas. We varied k and
tested different cutoff radii rmax = 8, 16, 32. We also varied the population size from 32K to 256K. The results
show (as expected) that if the cutoff radius rmax and k are increased, the RMSE decreases. However, the influence
of rmax is significantly higher than that of the chosen k (Figure 12). We chose rmax = 32 for the run- time tests.

Having determined the selected parameter for an acceptable RMSE, we performed run- time and throughput tests.

6.4 | Assessing run- time performance

6.4.1 | Impact of r on run- time

Figure 13 shows the run- time measurements for the Shell approach. We tested population sizes of n = 32K, 64K, 128K, 256K
and radii r = 8, 16, 24, 32, 40; the grid size is 500 × 500. As is to be expected, the run- time of this algorithm significantly
increases with larger r and population size, since massively more samples are processed per grid cell. For r = 40 and sam-
ple size n = 256K, a raster is created in ca. 1 min. As we assessed in Section 6.3.1, r = 16 is sufficient for the Cambridge
data set, which can be computed for sample size n = 256K in around 10 s. Nevertheless, the Shell approach is not efficient
for real- time processing as defined previously, in that it should produce a raster within 1–2 s.

Next, we tested the k- Shell approach, which is adaptive to sample distributions and skew, but is not less af-
fected by population size.

6.4.2 | Impact of k on run- time

In the k- Shell approach, we investigated the impact of the k parameter on the run- time performance (shown in
Figures 14 and 15) since k determines how many samples are used for estimation. We tested population sizes
n = 32K, 64K, …, 256K and k = 4, 6, 8, 16; the grid size is 500 × 500. This test showed that the k- Shell approach has

F IGURE 8  Impact of radius r on RMSE for the Shell algorithm (t = 24)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Radius; Random; t = 24; 1000 x 1000

IDW Radius

R
M

SE
/tr

ut
h

m
ea

n

Shell, 256K
Shell, 128K
Shell, 64K
Shell, 32K

0 8 16 32 48 64 80

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Radius; Cambridge; t = 24; 1000 x 1000

IDW Radius

R
M

SE
/tr

ut
h

m
ea

n

0 8 16 32 48 64 80

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Radius; Japan; t = 24; 1000 x 1000

IDW Radius

R
M

SE
/tr

ut
h

m
ea

n

0 8 16 32 48 64 80

18  |     LIANG et AL.

the best run- time performance of the algorithms proposed, and consistently reaches real- time computation. Even
for the largest sample size of n = 256K and k = 16, the k- Shell approach runs in under 0.5 s. Previously, we had de-
termined that for the data set at hand, k = 8 provides sufficiently low RMSE. Note that the run- time performance
for n = 32K is higher than that for n = 64K; this is due to the fact that n = 32K is a sparser sample set, and thus the
cell interpolators need to search in a wider radius (i.e., more cells) to find sufficient k samples.

F IGURE 9 Radius vs. power for the Shell algorithm (t = 24)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Radius; Random; t = 24; 1000 x 1000t

IDW Radius

R
M

SE
/tr

ut
h

m
ea

n

Shell, p=4
Shell, p=3
Shell, p=2
Shell, p=1

0 8 16 32 48 64 80

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Radius; Cambridge; t = 24; 1000 x 1000t = 24; 1000 x 1000

IDW Radius

R
M

SE
/tr

ut
h

m
ea

n

0 8 16 32 48 64 80
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7

Radius; Japan; t = 24; 1000 x 1000t = 24; 1000 x 1000

IDW Radius

R
M

SE
/tr

ut
h

m
ea

n

0 8 16 32 48 64 80

F IGURE 10  Impact of parameter k for the k- Shell algorithm (t = 24)

k; Random; t = 24; 1000 x 1000

k

R
M

SE
/tr

ut
h

m
ea

n

k−Shell, 256K
k−Shell, 128K
k−Shell, 64K
k−Shell, 32K

32

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

0.
22

0.
27

0.
28

0.
29

0.
30

0.
31

0.
32

0.
33

0.
34

k; Cambridge; t = 24; 1000 x 1000

k

R
M

SE
/tr

ut
h

m
ea

n

32

0.
16

0.
17

0.
18

0.
19

0.
20

k; Japan; t = 24; 1000 x 1000

k

R
M

SE
/tr

ut
h

m
ea

n

1 4 8 16 1 4 8 16 1 4 8 16 32

     |  19LIANG et AL.

6.4.3 | Summary of Run- time Evaluations

Summarizing the run- time tests of the proposed algorithms, we assess that k- Shell and ak- Shell perform signif-
icantly faster that Shell for random sample distribution and dense metropolitan networks (see Figure 16 and
Figure 17). The tests show that k- Shell and ak- Shell interpolate 250k observations in around 0.3 s, which fulfills the
real- time performance criteria. For sparser, rural street networks, ak- Shell outperforms the other two algorithms,
taking around 1 s for 250k samples, while k- Shell takes 5 s for the same configuration. Thus, for areas with sparse,
irregular sampling capping the search radius is essential to keep run- time within real- time requirements.

6. 5  | PERFORMANCE TEST SUMMARY AND DISCUSSION

In the last test, we compared run- time versus RMSE for the Shell, k- Shell and ak- Shell approaches (see Figure 18).
The population sizes tested are n = 32K, 64K, 128K, 256K and the grid is 500 × 500.

We tested the three sampling distributions as mentioned before. In the randomly sampled data set, the Shell
algorithm with r = 16 reduced the RMSE from 0.15 to 0.08 while the run- time increased from 1.5 to 10 s from
the smallest to the largest data set. This algorithm depends more on the population size with regard to run- time
performance, and the run- time increases disproportionately to the reduction in prediction error. For the k- Shell
approach, the RMSE is in the same range as for the Shell algorithm, while the run- time for k- Shell is consistently
around 0.25 s, even for the largest data sets. Thus, the k- Shell approach does deliver real- time performance, even
for massive data sets, with an almost stable real- time run- time performance and comparable RMSE as methods
that use more sample points for interpolation for random sampling cases. For comparison, the kriging baseline
using all samples and a local neighborhood of 32 elements has a RMSE of 0.1 (with a run- time of 5 h).

Further, we tested the two sampling scenarios that are based on dense and sparse road networks. In the
Cambridge data set, the k- Shell algorithm produces a RMSE between 0.295 and 0.28 with increasingly larger data
sets, while the run- time is constant around 0.25 s. On the other hand, the Shell approach reduces the RMSE from

F IGURE 11 k Parameter vs. power parameters for the k- Shell algorithm (t = 24)

0.
11

0.
12

0.
13

0.
14

0.
15

k; Random; t = 24; 1000 x 1000

IDW radius

R
M

SE
/tr

ut
h

m
ea

n

k−Shell, p = 4
k−Shell, p = 3
k−Shell, p = 2
k−Shell, p = 1

32

0.
27

0.
28

0.
29

0.
30

0.
31

k; Cambridge; t = 24; 1000 x 1000

IDW radius

R
M

SE
/tr

ut
h

m
ea

n

32

0.
17

0
0.

17
5

0.
18

0
0.

18
5

0.
19

0

k; Japan; t = 24; 1000 x 1000

IDW radius

R
M

SE
/tr

ut
h

m
ea

n

1 4 8 16 1 4 8 16 1 4 8 16 32

20  |     LIANG et AL.

0.29 to 0.27 for r = 16 with increasingly larger data sets, and from 0.27 to 0.25 for r = 32, while the run- time in-
creases to 25 s for the larger data sets. Thus, the run- time for the Shell approach does increase with data set size.
Note that for this data set the RMSE is not further improved with n = 128K or n = 256K, that is, sufficient samples
are available with n = 128K. Still, the k- Shell algorithm still provides real- time run- time performance and produces
a RMSE of 0.28 compared to a value of 0.25 delivered by the Shell approach. For comparison, the kriging baseline
RMSE is 0.27.

F IGURE 12  Impact of rmax on the ak- Shell algorithm (t = 24)

0.
08

0.
10

0.
12

0.
14

0.
16

ak−Shell RMSE; Random; t = 24; 500 x 500

k

R
M

SE
/m

ea
n

r = 8, n = 32K
r = 8, n = 64K
r = 8, n = 128K
r = 8, n = 256K
r = 16, n = 32K
r = 16, n = 64K

r = 16, n = 128K
r = 16, n = 256K
r = 32, n = 32K
r = 32, n = 64K
r = 32, n = 128K
r = 32, n = 256K

0.
30

0.
35

0.
40

0.
45

ak−Shell RMSE; Cambridge; t = 24; 500 x 500

k

R
M

SE
/m

ea
n

4 6 8 10 12 14 16 4 6 8 10 12 14 16 4 6 8 10 12 14 16

0.
17

0.
18

0.
19

0.
20

0.
21

0.
22

0.
23

0.
24

ak−Shell RMSE; Japan; t = 24; 500 x 500

k

R
M

SE
/m

ea
n

F IGURE 13 Run- time for the Shell algorithm (t = 24)

Shell runtime; Random; t = 24; 500 x 500

Number of sensors

R
un

tim
e

(s
)

Shell, r = 40
Shell, r = 32
Shell, r = 24
Shell, r = 16
Shell, r = 8

256K

Shell runtime; Cambridge; t = 24; 500 x 500

Number of sensors

R
un

tim
e

(s
)

256K

Shell runtime; Japan; t = 24; 500 x 500

Number of sensors

R
un

tim
e

(s
)

0
10

20
30

40
50

60
70

32K 64K 128K

0
10

20
30

40
50

60
70

32K 64K 128K

0
10

20
30

40
50

60
70

32K 64K 128K 256K

     |  21LIANG et AL.

In the Japan data set, the ak- Shell approach has the shortest run- time (around 1 s) and the RMSE is between
0.175 and 0.19 for increasingly larger data sets. The k- Shell algorithm produces a RMSE between 0.185 and 0.175,
while the run- time is constant around 2.5 s. This test case shows the necessity of a stop criterion for the search
radius (i.e., rmax) to provide for real- time performance (the kriging baseline RMSE is 0.15). The Shell algorithm has
the smallest RMSE of the tested algorithms (1.68 for r = 16), while the run- time increases to 10 s.

F IGURE 14 Run- time for the k- Shell algorithm (t = 24)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k−Shell runtime; Random; t = 24; 500 x 500

Number of sensors

R
un

tim
e

(s
)

k−Shell, k = 16
k−Shell, k = 8
k−Shell, k = 6
k−Shell, k = 4

256K

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k−Shell runtime; Cambridge; t = 24; 500 x 500

Number of sensors

R
un

tim
e

(s
)

256K
4.

0
4.

2
4.

4
4.

6
4.

8
5.

0

k−Shell runtime; Japan; t = 24; 500 x 500

Number of sensors

R
un

tim
e

(s
)

32K 64K 128K 32K 64K 128K 32K 64K 128K 256K

F IGURE 15 Run- time for the k- Shell algorithm (t = 40)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k−Shell runtime; Random; t = 40; 500 x 500

Number of sensors

R
un

tim
e

(s
)

k−Shell, k = 16
k−Shell, k = 8
k−Shell, k = 6
k−Shell, k = 4

256K

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k−Shell runtime; Cambridge; t = 40; 500 x 500

Number of sensors

R
un

tim
e

(s
)

256K

4.
0

4.
2

4.
4

4.
6

4.
8

5.
0

k−Shell runtime; Japan; t = 40; 500 x 500

Number of sensors

R
un

tim
e

(s
)

32K 64K 128K 32K 64K 128K 32K 64K 128K 256K

22  |     LIANG et AL.

7  | CONCLUSIONS AND FUTURE WORK

With advances in technology, environmental monitoring has become increasingly sensor dense and real time.
Sensor data streams enable real- time applications such as environmental hazard detection, or earthquake, wildfire,
or radiation monitoring, but in- depth analysis of such spatial fields is often based on continuous representations.

F IGURE 17 Run-time comparison for Shell, k-Shell, and ak-Shell (t = 40)

Runtime overview; Random; t = 40; 500 x 500

Number of sensors

R
un

tim
e

(s
)

Shell, r = 32
Shell, r = 16
k−Shell, k = 8
k−Shell, k = 4
ak−Shell, r = 32, k = 8
ak−Shell, r = 32, k = 4

256K

Runtime overview; Cambridge; t = 40; 500 x 500

Number of sensors

R
un

tim
e

(s
)

256K

Runtime overview; Japan; t = 40; 500 x 500

Number of sensors

R
un

tim
e

(s
)

256K32K 64K 128K

1/
4

1/
2

1
2

1/
2

5
10

25
50

32K 64K 128K

1/
4

1/
2

1
2

1/
2

5
10

25
50

32K 64K 128K

1/
4

1/
2

1
2

1/
2

5
10

25
50

F I G U R E 1 6 Run-time comparison for Shell, k-Shell, and ak-Shell (t = 24)

Runtime overview; Random; t = 24; 500 x 500

Number of sensors

R
un

tim
e

(s
)

Shell, r = 32
Shell, r = 16
k−Shell, k = 8
k−Shell, k = 4
ak−Shell, r = 32, k = 8
ak−Shell, r = 32, k = 4

256K

Runtime overview; Cambridge; t = 24; 500 x 500

Number of sensors

R
un

tim
e

(s
)

256K

Runtime overview; Japan; t = 24; 500 x 500

Number of sensors

R
un

tim
e

(s
)

256K32K 64K 128K

1/
4

1/
2

1
2

1/
2

5
10

25
50

32K 64K 128K

1/
4

1/
2

1
2

1/
2

5
10

25
50

32K 64K 128K

1/
4

1/
2

1
2

1/
2

5
10

25
50

     |  23LIANG et AL.

In this article, we presented an approach leveraging data stream engines to achieve scalable, high- throughput
inverse distance weighting interpolation. This stream operator framework continuously generates representa-
tions of spatial continuous phenomena in near real time. In detail, we introduced a novel stream query operator
framework that extends general- purpose data stream engines. The proposed framework includes a two- panel,
spatio- temporal grid- based index and the Shell, k- Shell and ak- Shell algorithms to estimate individual grid cells
efficiently and adaptively to sampling skew. For our performance tests, we generated several different spatio-
temporal stream data sets based on the radiation deposits in the Fukushima region after the nuclear accident
of March, 2011 in Japan. We took different sampling scenarios into account (such as dense metropolitan road
networks, sparse rural networks, and random sampling). For our performance experiments, we first investigated
parameters such as search radius, power, and k parameters that achieved the lowest RMSE for the estimated
fields. Following on, we tested the throughput and run- time performance of the proposed algorithms using these
parameters. Our results showed that the k- Shell algorithm of the proposed framework continuously produces
rasters based on 250k update/s in under 0.5 s using a state- of- the- art workstation.

While this article focused on the questions of throughput and run- time performance, another element of con-
tinuous stream processing is the automatically adaptive nature of a stream query framework. For instance, in this
article we determined parameter settings for IDW such as p, r, and k experimentally. An automated system with
queries that run for several weeks might experience significant changes in sampling patterns of moving sensors
and also phenomena changes, so that parameters might need to change over the run- time of the query. Future
research is required to explore concepts of how to determine and adapt such parameters during stream query
execution on- the- fly and automatically.

8 | ACKNOWLEDG MENTS

The authors would like to thank the anonymous reviewers for their valuable feedback. The authors also thank
Balaji Venkatesan and Anthony Peterson for support with performance testing. The research in this article was
supported by the National Science Foundation through Grant No. 1527504.

F IGURE 18 RMSE vs. run- time for Shell, k- Shell, and ak- Shell (t = 24)

0.
05

0.
10

0.
15

0.
20

Overview; Random; t=24; 500x500

Runtime (s)

R
M

SE
/m

ea
n

Shell, r=32
Shell, r=16
k−Shell, k=8
k−Shell, k=4
ak−Shell, r=32, k=8
ak−Shell, r=32, k=4

Overview; Cambridge; t=24; 500x500

Runtime (s)

R
M

SE
/m

ea
n

Overview; Japan; t=24; 500x500

Runtime (s)

R
M

SE
/m

ea
n

1/4 1/2 1 21/2 5 10 25 50

0.
25

0.
26

0.
27

0.
28

0.
29

0.
30

1/4 1/2 1 21/2 5 10 25 50

0.
16

5
0.

17
0

0.
17

5
0.

18
0

0.
18

5
0.

19
0

1/4 1/2 1 21/2 5 10 25 50

24  |     LIANG et AL.

NOTE S
1 Sensors might also sample asynchronously, but this case is not considered in this article.
2 The great circle distance between a cell center icx,y and the relevant tuples xj is calculated using the Haversine function.

R E FE R E N C E S

Agrible, Inc. (2016). Agrible. Retrieved from http://www.agrible.com
Ali, M., Chandramouli, B., Raman, B. S., & Katibah, E. (2010). Spatio-temporal stream processing in Microsoft StreamInsight.

In Proceedings of the 26th IEEE International Conference on Data Engineering (pp. 542–543). Long Beach, CA: IEEE.
Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., & Tzoumas, K. (2015). Apache FlinkTM: Stream and batch pro-

cessing in a single engine. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 36(4), 28–38.
Chino, M., Ishikawa, H., & Yamazawa, H. (1993). SPEEDI and WSPEEDI: Japanese emergency response systems to predict

radiological impacts in local and workplace areas due to a nuclear accident. Mathematics & Physical Sciences Radiation
Protection Dosimetry, 50(2), 145–152.

Faulkner, M., Olson, M., Chandy, R., Krause, J., Chandy, K., & Krause, A. (2011). The next big one: Detecting earth-
quakes and other rare events from community-based sensors. In Proceedings of the 10th International Conference on
Information Processing in Sensor Networks (pp. 13–24). Chicago, IL: IEEE.

Galic, Z., Baranovič, M., Krízanovič, K., & Méskovič, E. (2014). Geospatial data streams: Formal framework and implemen-
tation. Data & Knowledge Engineering, 91, 1–16.

Guan, Q., Kyriakidis, P. C., & Goodchild, M. F. (2011). A parallel computing approach to fast geostatistical areal interpola-
tion. International Journal of Geographical Information Science, 25(8), 1241–1267.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (pp. 47–57). Boston, MA: ACM.

Hennebohl, K., Appel, M., & Pebesma, E. (2011). Spatial interpolation in massively parallel computing environments. In
Proceedings of the 14th AGILE International Conference on Geographic Information Science. Utrecht, The Netherlands:
AGILE.

Heuvelink, G. B. M., Jiang, Z., De Bruin, S., & Twenhofel, C. J. W. (2010). Optimization of mobile radioactivity monitoring
networks. International Journal of Geographical Information Science, 24(3), 365–382.

Huang, F., Bu, S., Tao, J., & Tan, X. (2016). OpenCL implementation of a parallel universal kriging algorithm for massive
spatial data interpolation on heterogeneous systems. ISPRS International Journal of Geo- Information, 5(6), 96.

Hudnut, K. W., Bock, Y., Galetzka, J. E., Webb, F. H., & Young, W. H. (2002). The Southern California Integrated GPS
Network (SCIGN). In Y. Fujinawa, & A. Yoshida (Eds.), Seismotectonics in convergent plate boundary (pp. 167–189).
Tokyo, Japan: TerraPub.

Kazemitabar, S., Demiryurek, U., Ali, M., Akdogan, A., & Shahabi, C. (2010). Geospatial stream query processing using
Microsoft SQL Server StreamInsight. Proceedings of the VLDB Endowment, 3(1&2), 1537–1540.

Kong, Q., Kwony, Y. W., Schreierz, L., Allen, S., Allen, R., & Strauss, J. (2015). Smartphone-based networks for earth-
quake detection. In Proceedings of the 15th International Conference on Innovations for Community Services (pp. 1–8).
Nuremberg, Germany: IEEE.

Krige, D. G. (1951). A statistical approach to some mine valuation and allied problems on the Witwatersrand (Unpublished
Ph.D. Dissertation). University of the Witwatersrand, Johannesburg, South Africa.

Lam, N. S. N. (1983). Spatial interpolation methods: A review. Cartography and Geographic Information Science, 10(2),
129–150.

Liang, Q., Nittel, S., & Hahmann, T. (2016). From data streams to fields: Extending stream data models with field data
types. In J. A. Miller, D. O’Sullivan, & N. Wiegand (Eds.), Geographic Information Science: 9th International Conference,
GIScience 2016, Montreal, QC, Canada, September 27–30, 2016, Proceedings (Lecture Notes in Computer Science, Vol.
9927, pp. 178–194). Cham, Switzerland: Springer.

Lorkowski, P., & Brinkhoff, T. (2015a). Environmental monitoring of continuous phenomena by sensor data streams: A sys-
tem approach based on kriging. In Proceedings of EnviroInfo and Third International Conference on ICT for Sustainability.
Copenhagen, Denmark.

Lorkowski, P., & Brinkhoff, T. (2015b). Towards real-time processing of massive spatio-temporally distributed sensor
data: A sequential strategy based on kriging. In F. Bacao, Y. M. Santos, & M. Painho (Eds.), AGILE 2015: Geographic
information science as an enabler of smarter cities and communities (Lecture Notes in Geoinformation and Cartography (pp.
145–163). Cham, Switzerland: Springer.

Mead, M., Popoola, O., Stewart, G., Landshoff, P., Calleja, M., Hayes, M., …, &Jones, R. (2013). The use of electrochemical
sensors for monitoring urban air quality in low- cost, high- density networks. Atmospheric Environment, 70, 186–203.

http://www.agrible.com

     |  25LIANG et AL.

Mei, G., Xu, N., & Xu, L. (2016). Improving GPU- accelerated adaptive IDW interpolation algorithm using fast kNN search.
SpringerPlus, 5(1), 1389.

Miller, J., Raymond, M., Archer, J., Adem, S., Hansel, L., Luti, M., …, & Ali, M. (2011). An extensibility approach
for spatio-temporal stream processing using Microsoft StreamInsight. In D. Pfoser, Y. Tao, K. Mouratidis, M.
Nascimento, M. F. Mokbel, S. Shekhar, & Y. Huang (Eds.), Advances in Spatial and Temporal Databases: 12th
International Symposium, SSTD 2011, Minneapolis, MN, USA, August 24–26, 2011, Proceedings (pp. 496–501). Berlin,
Germany: Springer.

Mitas, L., & Mitasova, H. (1999). Spatial interpolation. In P. Longley, M. F. Goodchild, D. J. Maguire, & D. W. Rhind (Eds.),
Geographical information systems: Principles, techniques, management and applications, 2nd ed. (pp. 481–492). New
York, NY: Wiley.

Murty, R. N., Mainland, G., Rose, I., Chowdhury, A. R., Gosain, A., Bers, J., & Welsh, M. (2008). CitySense: An urban-scale
wireless sensor network and testbed. In Proceedings of the 2008 IEEE Conference on Technologies for Homeland Security
(pp. 583–588). Waltham, MA: IEEE.

Nittel, S. (2009). A survey of geosensor networks: Advances in dynamic environmental monitoring. Sensors, 9(7),
5664–5678.

Nittel, S. (2015). Real- time sensor data streams. SIGSPATIAL Newsletter, 7(2), 22–28.
Nittel, S., Whittier, J. C., & Liang, Q. (2012). Real-time spatial interpolation of continuous phenomena using mobile

sensor data streams. In Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (pp. 530–533). Redondo Beach, CA: ACM.

Pebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package. Computers & Geosciences, 30(7), 683–691.
Resch, B., Mittlboeck, M., Girardin, F., Britter, R., & Ratti, C. (2009). Real-time geo-awareness sensor data integration

for environmental monitoring in the city. In Proceedings of the 2009 International Conference on Advanced Geographic
Information Systems and Web Services (pp. 92–97). Cancun, Mexico: IEEE.

Safecast (2016). Safecast. Retrieved from https://blog.safecast.org
Sanchez, L., Galache, J., Gutierrez, V., Hernandez, J. M., Bernat, J., Gluhak, A., & Garcia, T. (2011). SmartSantander: The

meeting point between future Internet research and experimentation and the smart cities. In Proceedings of the 2011
Future Network and Mobile Summit. Warsaw, Poland.

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 23rd ACM
National Conference (pp. 517–524). Las Vegas, NV: ACM.

Srinivasan, B. V., Duraiswami, R., & Murtugudde, R. (2010). Efficient kriging for real-time spatio-temporal interpolation.
In Proceedings of the 20th Conference on Probability and Statistics in Atmospheric Sciences (pp. 228–235). Atlanta, GA:
AMS.

Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). The Lagrangian particle dispersion model FLEXPART
version 6.2. Atmospheric Chemistry & Physics, 5, 2461–2474.

Stonebraker, M., Çetintemel, U., & Zdonik, S. (2005). The 8 requirements of real- time stream processing. ACM SIGMOD
Record, 34(4), 42–47.

The R Project for Statistical Computing (2017). The R project for statistical computing. Retrieved from https://www.r-proj-
ect.org

Venkatesan, B. (2013). Feasibility study of continuous real-time spatial interpolation of phenomena using built-in functionality
of a commercial data stream management system (Technical Report). Orono, ME: University of Maine.

Whittier, J., Nittel, S., Liang, Q., & Plummer, M. (2013). Towards window stream queries over continuous phenomena.
In Proceedings of the Fourth International ACM SIGSPATIAL Workshop on GeoStreaming (pp. 1–10). Orlando, FL: ACM.

Whittier, J., Nittel, S., & Subasinghe, I. (2017). Real-time earthquake monitoring with spatio- temporal fields. In Proceedings
of the International Symposium on Spatiotemporal Computing. Cambridge, MA.

Wilensky, U. (1999). NetLogo: Center for Connected Learning and Computer-Based Modeling. Retrieved from http://ccl.
northwestern.edu/netlogo/

Wotawa, G., & Skomorowski, P. (2012). Long-range transport of particulate radionuclides from the Fukushima NPP acci-
dent: Sensitivity analysis for wet deposition. In Proceedings of the EGU General Assembly (p. 10494). Vienna, Austria.

Xiao, C., Chen, N., Gong, J., Wang, W., Hu, C., & Chen, Z. (2017). Event- driven distributed information resource- focusing
service for emergency response in smart city with cyber- physical infrastructures. ISPRS International Journal of Geo-
Information, 6(8), 251.

Zhong, X., Kealy, A., & Duckham, M. (2016). Stream kriging: Incremental and recursive ordinary kriging over spatiotempo-
ral data streams. Computers & Geosciences, 90, 134–143.

Zhong, X., Kealy, A., Sharon, G., & Duckham, M. (2015). Spatial interpolation of streaming geosensor network data in the
RISER system. In J. Gensel, & M. Tomko (Eds.), Web and wireless geographical information systems: 14th International
Symposium, W2GIS 2015, Grenoble, France, May 21–22, 2015, Proceedings (Lecture Notes in Computer Science, Vol.
9080, pp. 161–177). Berlin, Germany: Springer.

https://blog.safecast.org
https://www.r-project.org
https://www.r-project.org
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

26  |     LIANG et AL.

Zhou, L., Chen, N., & Chen, Z. (2017). Efficient streaming mass spatio- temporal vehicle data access in urban sensor net-
works based on Apache Storm. Sensors, 17(4), e815.

How to cite this article: Liang Q, Nittel S, Whittier JC, de Bruin S. Real- time inverse distance weighting
interpolation for streaming sensor data. Transactions in GIS. 2018;00:1–26. https://doi.org/10.1111/
tgis.12458

https://doi.org/10.1111/tgis.12458
https://doi.org/10.1111/tgis.12458

